Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 13, 2020

Resveratrol in the treatment of neuroblastoma: a review

  • Kamil Leis , Aleksandra Baska EMAIL logo , Weronika Bereźnicka , Agata Marjańska , Ewelina Mazur , Bartosz Tadeusz Lewandowski , Krystian Kałużny and Przemysław Gałązka

Abstract

Resveratrol, polyphenol naturally occurring in grapes or nuts, has anti-cancer properties in the treatment of neuroblastoma – the most common childhood solid tumor. It affects cancer cells by increasing apoptosis, inducing cell necrosis and reducing tumor mass. Mechanism of action – (1) converting procaspases, mainly procaspases three and nine into active forms – caspases, (2) blocking kinases, and also (3) leading the cell to the S-cell cycle, where it is most effective while increasing the concentration of cyclin E and lowering the concentration of p21 protein. In vitro, as well as, rodent animal models studies are available and show promising results. Therapeutic doses, currently within 10–100 μmol/L, are also being tested, as well as other forms of resveratrol, such as its trans-4,4′-dihydroxystilbene analog and polyphenol lipoconjugates. In our review, we presented the known molecular mechanisms of polyphenol anti-tumor activity against neuroblastoma and discussed the studies confirming its effectiveness.


Corresponding author: Aleksandra Baska, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Chen, Y., Tseng, S.H., Lai, H.S., and Chen, W.J. (2004). Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 136: 57–66, https://doi.org/10.1016/j.surg.2004.01.017.Search in Google Scholar

Chillemi, R., Cardullo, N., Greco, V., Malfa, G., Tomasello, B., and Sciuto, S. (2015). Synthesis of amphiphilic resveratrol lipoconjugates and evaluation of their anticancer activity towards neuroblastoma SH-SY5Y cell line. Eur. J. Med. Chem. 96: 467–481. https://doi.org/10.1016/j.ejmech.2015.04.038.Search in Google Scholar

Chkhikvishvili, I., Gogia, N., and Sirbiladze, G. (2008). Study of resveratrol and antioxidant activity in Georgian brand red wines and a number of foreign red wines. Georgian Med. News 159: 53–57.Search in Google Scholar

Dudley, J.I., Lekli, I., Mukherjee, S., Das, M., Bertelli, A.A., and Das, D.K. (2008). Does white wine qualify for French paradox? comparison of the cardioprotective effects of red and white wines and their constituents: resveratrol, tyrosol, and hydroxytyrosol. J. Agric. Food Chem. 56: 9362–9373, https://doi.org/10.1021/jf801791d.Search in Google Scholar

Franks, L.M., Bollen, A., Seeger, R.C., Stram, D.O., and Matthay, K.K. (1997). Neuroblastoma in adults and adolescents: an indolent course with poor survival. Cancer Interdiscip. Int. J. ACS 79: 2028–2035, https://doi.org/10.1002/(sici)1097-0142(19970515)79:10<2028::aid-cncr26>3.0.co;2-v.10.1002/(SICI)1097-0142(19970515)79:10<2028::AID-CNCR26>3.0.CO;2-VSearch in Google Scholar

Gerszon, J. and Rodacka, A. (2016). Determination of trans-resveratrol action on two different types of neuronal cells, neuroblastoma and hippocampal cells. Czech J. Food Sci. 34: 118–126, https://doi.org/10.17221/401/2015-cjfs.Search in Google Scholar

Graham, R.M., Hernandez, F., Puerta, N., De Angulo, G., Webster, K.A., and Vanni, S. (2016). Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1. Exp. Mol. Med. 48: e210, https://doi.org/10.1038/emm.2015.116.Search in Google Scholar

Graham, R.M., Puerta, N., Webster, K.A., and Vanni, S. (2012). Resveratrol potentiates glycolytic inhibitor-induced neuroblastoma cell death independent of SIRT activity. Cancer Res. 72: 3214. https://doi.org/10.1158/1538-7445.AM2012-3214.Search in Google Scholar

Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C.C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855–4878.Search in Google Scholar

Gurney, J.G., Ross, J.A., Wall, D.A., Bleyer, W.A., Severson, R.K., and Robison, L.L. (1997). Infant cancer in the US: histology-specific incidence and trends, 1973 to 1992. Pediatr. Hematol. Oncol. J. 19: 428–432, https://doi.org/10.1097/00043426-199709000-00004.Search in Google Scholar

Howman-Giles, R., Shaw, P.J., Uren, R.F., and Chung, D.K. (2007). Neuroblastoma and other neuroendocrine tumors. Seminars in nuclear medicine 2007. WB Saunders, USA.10.1053/j.semnuclmed.2007.02.009Search in Google Scholar

Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.S., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218–220, https://doi.org/10.1126/science.275.5297.218.Search in Google Scholar

Jie, X., Cheng, Y., Xue, Q., Luo, Y., Cao, Y., and Cao, Y. (2018). The research progress of p53 tumour suppressor activity controlled by Numb in triple-negative breast cancer. bioRxiv: 463802. https://doi.org/10.1101/463802.Search in Google Scholar

Kenealey, J.D., Subramanian, L., Van Ginkel, P.R., Darjatmoko, S., Lindstrom, M.J., Somoza, V., Ghosh, S.K., Song, Z., Hsung, R.P., Kwon, G.S., et al. (2011). Resveratrol metabolites do not elicit early pro-apoptotic mechanisms in neuroblastoma cells. J. Agric Food Chem. 59: 4979–4986, https://doi.org/10.1021/jf104901g.Search in Google Scholar PubMed PubMed Central

Ko, J.H., Sethi, G., Um, J.Y., Shanmugam, M.K., Arfuso, F., Kumar, A.P., Bishayee, A., and Ahn, K.S. (2017). The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 18: 2589, https://doi.org/10.3390/ijms18122589.Search in Google Scholar PubMed PubMed Central

Kuršvietienė, L., Stanevičienė, I., Mongirdienė, A., and Bernatonienė, J. (2016). Multiplicity of effects and health benefits of resveratrol. Medicina 52: 148–155. https://doi.org/10.1016/j.medici.2016.03.003.Search in Google Scholar PubMed

Ladenstein, R., Pötschger, U., Hartman, O., Pearson, A.D.J., Klingebiel, T., Castel, V., Yaniv, I., Demirer, T., and Dini, G. (2008). 28 years of high-dose therapy and SCT for neuroblastoma in Europe: lessons from more than 4000 procedures. Bone Marrow Transplant. 41: S118–S127, https://doi.org/10.1038/bmt.2008.69.Search in Google Scholar PubMed

Lee, M.K., Kang, S.J., Poncz, M., Song, K.J., and Park, K.S. (2007). Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp. Mol. Med. 39: 376–384, https://doi.org/10.1038/emm.2007.42.Search in Google Scholar PubMed

Li, F., Gong, Q., Dong, H., and Shi, J. (2012). Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr. Pharm. Des. 18: 27–33, https://doi.org/10.2174/138161212798919075.Search in Google Scholar PubMed

Lofrumento, D.D., Nicolardi, G., Cianciulli, A., Nuccio, F.D., Pesa, V.L., Carofiglio, V., Dragone, T., Calvello, R., and Panaro, M.A. (2014). Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun. 20: 249–260, https://doi.org/10.1177/1753425913488429.Search in Google Scholar PubMed

Lopez-Miranda, V., Soto-Montenegro, M.L., Vera, G., Herradon, E., Desco, M., and Abalo, R. (2012). Resveratrol: a neuroprotective polyphenol in the Mediterranean diet. Rev. Neurol. 54: 349–356.Search in Google Scholar

Lu, H. and Huang, H. (2011). FOXO1: a potential target for human diseases. Curr. Drug Targets 12: 1235–1244, https://doi.org/10.2174/138945011796150280.Search in Google Scholar PubMed PubMed Central

Madden, E., Logue, S.E., Healy, S.J., Manie, S., and Samali, A. (2019). The role of the unfolded protein response in cancer progression: from oncogenesis to chemoresistance. Biol. Cell 111: 1–17, https://doi.org/10.1111/boc.201800050.Search in Google Scholar PubMed

Miloso, M., Bertelli, A.A., Nicolini, G., and Tredici, G. (1999). Resveratrol-induced activation of the mitogen-activated protein kinases, ERK1 and ERK2, in human neuroblastoma SH-SY5Y cells. Neurosci. Lett. 264: 141–144, https://doi.org/10.1016/s0304-3940(99)00194-9.Search in Google Scholar

National Cancer Institute (2020a). Drugs approved for neuroblastoma.Search in Google Scholar

National Cancer Institute (2020b). Neuroblastoma treatment (PDQ®)–patient version.Search in Google Scholar

Nicolini, G., Rigolio, R., Scuteri, A., Miloso, M., Saccomanno, D., Cavaletti, G., and Tredici, G. (2003). Effect of trans-resveratrol on signal transduction pathways involved in paclitaxel-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neuroch. Int. 42: 419–429, https://doi.org/10.1016/s0197-0186(02)00132-8.Search in Google Scholar

Pizarro, J. G., Verdaguer, E., Ancrenaz, V., Junyent, F., Sureda, F., Pallàs, M., Folch, J., and Camins, A. (2011). Resveratrol inhibits proliferation and promotes apoptosis of neuroblastoma cells: role of sirtuin 1. Neurochem. Res. 36: 187–194, https://doi.org/10.1007/s11064-010-0296-y.Search in Google Scholar PubMed

Rahman, M., Kim, N.H., Kim, S.H., Oh, S.M., and Huh, S.O. (2012). Antiproliferative and cytotoxic effects of resveratrol in mitochondria-mediated apoptosis in rat b103 neuroblastoma cells. Korean J. Physiol. Pharmacol. 16: 321–326, https://doi.org/10.4196/kjpp.2012.16.5.321.Search in Google Scholar PubMed PubMed Central

Ren, X., Bai, X., Zhang, X., Li, Z., Tang, L., Zhao, X., Li, Z., Ren, Y., Wei, S., Wang, Q., et al. (2015). Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol. Cell. Proteomics 14: 316–328, https://doi.org/10.1074/mcp.m114.041905.Search in Google Scholar PubMed PubMed Central

Rocha-González, H.I., Ambriz-Tututi, M., and Granados-Soto, V. (2008). Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci. Ther. 14: 234–247, https://doi.org/10.1111/j.1755-5949.2008.00045.x.Search in Google Scholar PubMed PubMed Central

Saha, B., Patro, B.S., Koli, M., Pai, G., Ray, J., Bandyopadhyay, S.K., and Chattopadhyay, S. (2017). trans-4, 4’-Dihydroxystilbene (DHS) inhibits human neuroblastoma tumor growth and induces mitochondrial and lysosomal damages in neuroblastoma cell lines. Oncotarget 8: 73905, https://doi.org/10.18632/oncotarget.17879.Search in Google Scholar PubMed PubMed Central

Siddiqui, I.A., Sanna, V., Ahmad, N., Sechi, M., and Mukhtar, H. (2015). Resveratrol nanoformulation for cancer prevention and therapy. Ann. N.Y. Acad. Sci. 1348: 20–31, https://doi.org/10.1111/nyas.12811.Search in Google Scholar PubMed

Singh, C.K., Ndiaye, M.A., and Ahmad, N. (2015). Resveratrol and cancer: challenges for clinical translation. Biochim. Biophys. Acta 1852: 1178–1185, https://doi.org/10.1016/j.bbadis.2014.11.004.Search in Google Scholar PubMed PubMed Central

Soto, B.L., Hank, J.A., Van De Voort, T.J., Subramanian, L., Polans, A.S., Rakhmilevich, A.L., Yang, R.K., Seo, S., Kim, K., Reisfeld, R.A., et al. (2011). The anti-tumor effect of resveratrol alone or in combination with immunotherapy in a neuroblastoma model. Cancer Immunol. Immun. 60: 731–738, https://doi.org/10.1007/s00262-011-0971-0.Search in Google Scholar PubMed PubMed Central

Spix, C., Pastore, G., Sankila, R., Stiller, C.A., and Steliarova-Foucher, E. (2006). Neuroblastoma incidence and survival in European children (1978–1997): report from the automated childhood cancer information system project. Eur. J. Cancer 42: 2081–2091, https://doi.org/10.1016/j.ejca.2006.05.008.Search in Google Scholar PubMed

Van Ginkel, P.R., Sareen, D., Subramanian, L., Walker, Q., DarjatmokoLindstrom, S. R.M.J., and Polans, A.S. (2007). Resveratrol inhibits tumor growth of human neuroblastoma and mediates apoptosis by directly targeting mitochondria. Clin. Cancer Res. 13: 5162–5169, https://doi.org/10.1158/1078-0432.ccr-07-0347.Search in Google Scholar PubMed

Wight, R.D., Tull, C.A., Deel, M.W., Stroope, B.L., Eubanks, A.G., Chavis, J.A., Drew, P.D., and Hensley, L.L. (2012). Resveratrol effects on astrocyte function: relevance to neurodegenerative diseases. Biochem. Biophys. Res. 426: 112–115, https://doi.org/10.1016/j.bbrc.2012.08.045.Search in Google Scholar PubMed PubMed Central

Yen, C.M., Tsai, C.W., Chang, W.S., Yang, Y.C., Hung, Y.W., Lee, H.T., Shen, C.C., Sheu, M.L., Wang, J.Y., Gong, C.L., et al. (2018). Novel combination of arsenic trioxide (As2O3) plus resveratrol in inducing programmed cell death of human neuroblastoma SK-N-SH cells. Cancer Genom. Proteom. 15: 453–460, https://doi.org/10.21873/cgp.20104.Search in Google Scholar PubMed PubMed Central

Zhang, L., Zhang, J., and Liu, J. (2010). Resveratrol affects cell growth of SH-SY5Y human neuroblastoma. Chin. J. Neuroanat. 26: 150–154.Search in Google Scholar

Received: 2020-04-01
Accepted: 2020-06-21
Published Online: 2020-09-13
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2020-0021/html
Scroll to top button