Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 11, 2020

YKL-40 and neuron-specific enolase in neurodegeneration and neuroinflammation

  • Valentin Dichev

    Valentin Dichev is a Ph.D. student in immunology at the Department of Medical Biology, Medical University-Plovdiv. His current research is focused on biomarkers for inflammation, autophagy, and neuronal damage. Mobile: 0886612955.

    EMAIL logo
    , Maria Kazakova

    Maria Kazakova, Ph.D., is an associate professor at the Department of Medical Biology, Medical University-Plovdiv. Her current research interests are in the field of novel biomarkers in autoimmune and tumor diseases. kazakova25@abv.bg.

    and Victoria Sarafian

    Victoria Sarafian, M.D., Ph.D., D.Sc., is a full professor of immunology and head of the Department of Medical Biology, Medical University-Plovdiv. Her current research interests are in the field of novel biomarkers and molecular medicine. sarafian@abv.bg.

Abstract

Neurodegenerative diseases comprise a large number of disorders with high impact on human health. Neurodegenerative processes are caused by various etiological factors and differ in their clinical presentation. Neuroinflammation is widely discussed as both a cause and a consequence in the manifestation of these disorders. The interplay between the two entities is considered as a major contributor to the ongoing disease progression. An attentive search and implementation of new and reliable markers specific for the processes of inflammation and degeneration is still needed. YKL-40 is a secreted glycoprotein produced by activated glial cells during neuroinflammation. Neuron-specific enolase (NSE), expressed mainly by neuronal cells, is a long-standing marker for neuronal damage. The aim of this review is to summarize, clarify, and evaluate the potential significance and relationship between YKL-40 and NSE as biomarkers in the monitoring and prognosis of a set of neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis. YKL-40 appears to be a more reliable biomarker in neurological diseases than NSE. The more prominent expression pattern of YKL-40 could be explained with the more obvious involvement of glial cells in pathological processes accompanying each neurodegenerative disease, whereas reduced NSE levels are likely related to low metabolic activity and increased death of neurons.

About the authors

Valentin Dichev

Valentin Dichev is a Ph.D. student in immunology at the Department of Medical Biology, Medical University-Plovdiv. His current research is focused on biomarkers for inflammation, autophagy, and neuronal damage. Mobile: 0886612955.

Maria Kazakova

Maria Kazakova, Ph.D., is an associate professor at the Department of Medical Biology, Medical University-Plovdiv. Her current research interests are in the field of novel biomarkers in autoimmune and tumor diseases. .

Victoria Sarafian

Victoria Sarafian, M.D., Ph.D., D.Sc., is a full professor of immunology and head of the Department of Medical Biology, Medical University-Plovdiv. Her current research interests are in the field of novel biomarkers and molecular medicine. .

Acknowledgments

The authors acknowledge the graphic work of Ms. Kristin Ozanian. The review was supported by the National Science Fund project KP-06-PN-33/12, Funder Id: http://dx.doi.org/10.13039/501100003336.

  1. Conflict of interest statement: None declared.

References

Abdo, W.F., De Jong, D., Hendriks, J.C., Horstink, M.W., Kremer, B.P., Bloem, B.R., and Verbeek, M.M. (2004). Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson’s disease. Mov. Disord. 19, 571–579.10.1002/mds.10714Search in Google Scholar

Alcolea, D., Vilaplana, E., Pegueroles, J., Montal, V., Sánchez-Juan, P., González-Suárez, A., Pozueta, A., Rodríguez-Rodríguez, E., Bartrés-Faz, D., Vidal-Piñeiro, D., et al. (2015). Relationship between cortical thickness and cerebrospinal fluid YKL-40 in predementia stages of Alzheimer’s disease. Neurobiol. Aging 36, 2018–2023.10.1016/j.neurobiolaging.2015.03.001Search in Google Scholar

Anderson, K.M., Olson, K.E., Estes, K.A., Flanagan, K., Gendelman, H.E., and Mosley, R.L. (2014). Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders. Transl. Neurodegener. 3, 25.10.1186/2047-9158-3-25Search in Google Scholar

Antonel, A., Mansilla, A., Rami, L., Lladó, A., Iranzo, A., Olives, J., Balasa, M., Sánchez-Valle, R., and Molinuevo, J.L. (2014). Cerebrospinal fluid level of YKL-40 protein in preclinical and prodromal Alzheimer’s disease. J. Alzheimers Dis. 42, 901–908.10.3233/JAD-140624Search in Google Scholar

Baldacci, F., Toschi, N., Lista, S., Zetterberg, H., Blennow, K., Kilimann, I., Teipel, S., Cavedo, E., Dos Santos, A.M., Epelbaum, S., et al. (2017). Two-level diagnostic classification using cerebrospinal fluid YKL-40 in Alzheimer’s disease. Alzheimers Dement. 13, 993–1003.10.1016/j.jalz.2017.01.021Search in Google Scholar

Bano, D., Zanetti, F., Mende, Y., and Nicotera, P. (2011). Neurodegenerative processes in Huntington’s disease. Cell Death Dis. 2, e228.10.1038/cddis.2011.112Search in Google Scholar

Blennow, K., Wallin, A., and Ekman, R. (1994). Neuron specific enolase in cerebrospinal fluid: a biochemical marker for neuronal degeneration in dementia disorders? J. Neural Transm. Parkinson Dis. Dement. Sect. 8, 183–191.10.1007/BF02260939Search in Google Scholar

Bonneh-Barkay, D., Wang, G., Starkey, A., Hamilton, R.L., and Wiley, C.A. (2010). In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases. J. Neuroinflamm. 7, 34.10.1186/1742-2094-7-34Search in Google Scholar

Bonneh-Barkay, D., Bissel, S.J., Kofler, J., Starkey, A., Wang, G., and Wiley, C.A. (2012). Astrocyte and macrophage regulation of YKL-40 expression and cellular response in neuroinflammation. Brain Pathol. 22, 530–546.10.1111/j.1750-3639.2011.00550.xSearch in Google Scholar

Brown, K.W., Kynoch, P.A., and Thompson, R.J. (1980). Immunoreactive nervous system of specific enolase (14-3-2 protein) in human serum and cerebrospinal fluid. Clin. Chim. Acta 101, 257–264.10.1016/0009-8981(80)90251-XSearch in Google Scholar

Bussink, A.P., Speijer, D., Aerts, J.M., and Boot, R.G. (2007). Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 177, 959–970.10.1534/genetics.107.075846Search in Google Scholar PubMed PubMed Central

Cantó, E., Tintoré, M., Villar, L.M., Costa, C., Nurtdinov, R., Álvarez-Cermeño, J.C., Arrambide, G., Reverter, F., Deisenhammer, F., Hegen, H., et al. (2015). Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain 138, 918–931.10.1093/brain/awv017Search in Google Scholar PubMed

Carabias, C.S, Gomez, P.A., Panero, I., Eiriz, C., Castaño-León, A.M., Egea, J., Lagares, A. (2019). YKL-40, SAA1, CRP and PCT are promising biomarkers for intracranial severity assessment of traumatic brain injury: relationship with Glasgow Coma Scale and CT volumetry. World Neurosurg. S1878–S8750, 32587–32592.Search in Google Scholar

Charil, A. and Filippi, M. (2007). Inflammatory demyelination and neurodegeneration in early multiple sclerosis. J. Neurol. Sci. 259, 7–15.10.1016/j.jns.2006.08.017Search in Google Scholar PubMed

Chaves, M.L., Camozzato, A.L., Ferreira, E.D., Piazenski, I., Kochhann, R., Dall’Igna, O., Mazzini, G.S., Souza, D.O., and Portela, L.V. (2010). Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J. Neuroinflamm. 7, 6.10.1186/1742-2094-7-6Search in Google Scholar PubMed PubMed Central

Chitnis, T. and Weiner, H. (2017). CNS inflammation and neurodegeneration. J. Clin. Invest. 127, 3577–3587.10.1172/JCI90609Search in Google Scholar PubMed PubMed Central

Ciancarelli, I., De Amicis, D., Di Massimo, C., Di Scanno, C., Pistarini, C., D’Orazio, N., and Tozzi Ciancarelli, T.M.G. (2014). Peripheral biomarkers of oxidative stress and their limited potential in evaluation of clinical features of Huntington’s patients. Biomarkers 19, 452–456.10.3109/1354750X.2014.935955Search in Google Scholar PubMed

Ciancarelli, I., De Amicis, D., Di Massimo, C., Sandrini, G., Pistarin, C., Carolei, A., and Ciancarelli, T.M.G. (2015). Influence of intensive multifunctional neurorehabilitation on neuronal oxidative damage in patients with Huntington’s disease. Funct. Neurol. 30, 47–52.Search in Google Scholar

Comabella, M., Fernández, M., Martin, R., Rivera-Vallvé, S., Borrás, E., Chiva, C., Julià, E., Rovira, A., Cantó, E., Alvarez-Cermeño, J.C., et al. (2010). Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain 133, 1082–1093.10.1093/brain/awq035Search in Google Scholar PubMed

Connor, J.R., Dodds, R.A., Emery, J.G., Kirkpatrick, R.B., Rosenberg, M., and Gowen, M. (2000). Human cartilage glycoprotein 39 (HC gp-39) mRNA expression in adult and fetal chondrocytes, osteoblasts and osteocytes by in-situ hybridization. Osteoarthritis Cartil. 8, 87–95.10.1053/joca.1999.0276Search in Google Scholar PubMed

Coulson, D.T., Beyer, N., Quinn, J.G., Brockbank, S., Hellemans, J., Irvine, G.B., Ravid, R., and Johnston, J.A. (2010). BACE1 mRNA expression in Alzheimer’s disease postmortem brain tissue. J. Alzheimers Dis. 22, 1111–1122.10.3233/JAD-2010-101254Search in Google Scholar PubMed

Craig-Schapiro, R., Perrin, R.J., Roe, C.M., Xiong, C., Carter, D., Cairns, N.J., Mintun, M.A., Peskind, E.R., Li, G., Galasko, D.R., et al. (2010). YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol. Psychiatry 68, 903–912.10.1016/j.biopsych.2010.08.025Search in Google Scholar PubMed PubMed Central

Crews, L. and Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol. Genet. 19, R12–R20.10.1093/hmg/ddq160Search in Google Scholar

Cunningham, R.T., Morrow, J.I., Johnston, C.F., and Buchanan, K.D. (1994). Serum neurone-specific enolase concentrations in patients with neurological disorders. Clin. Chim. Acta 230, 117–124.10.1016/0009-8981(94)90264-XSearch in Google Scholar

Cutler, N.R., Kay, A.D., Marangos, P.J., and Burg, C. (1986). Cerebrospinal fluid neuron-specific enolase is reduced in Alzheimer’s disease. Arch. Neurol. 43, 153–154.10.1001/archneur.1986.00520020047017Search in Google Scholar PubMed

Dayalu, P. and Albin, R.L. (2015). Huntington disease: pathogenesis and treatment. Neurol. Clin. 33, 101–114.10.1016/j.ncl.2014.09.003Search in Google Scholar PubMed

De Keyser, J., Mostert, J.P., and Koch, M.W. (2008). Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci. 267, 3–16.10.1016/j.jns.2007.08.044Search in Google Scholar PubMed

Dugger, B.N. and Dickson, D.W. (2017). Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 9, a028035.10.1101/cshperspect.a028035Search in Google Scholar PubMed PubMed Central

Francescone, R.A., Scully, S., Faibish, M., Taylor, S.L., Oh, D., Moral, L., Yan, W., Bentley, B., and Shao, R. (2011). Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J. Biol. Chem. 286, 15332–15343.10.1074/jbc.M110.212514Search in Google Scholar PubMed PubMed Central

Fusetti, F., Pijning, T., Kalk, K.H., Bos, E., and Dijkstra, B.W. (2003). Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J. Biol. Chem. 278, 37753–37760.10.1074/jbc.M303137200Search in Google Scholar PubMed

Geng, B., Pan, J., Zhao, T., Ji, J., Zhang, C., Che, Y., Yang, J., Shi, H., Li, J., Zhou, H., et al. (2018). Chitinase 3-like 1-CD44 interaction promotes metastasis and epithelial-to-mesenchymal transition through β-catenin/Erk/Akt signaling in gastric cancer. J. Exp. Clin. Cancer Res. 37, 208.10.1186/s13046-018-0876-2Search in Google Scholar PubMed PubMed Central

Gispert, J.D., Monté, G.C., Falcon, C., Tucholka, A., Rojas, S., Sánchez-Valle, R., Antonell, A., Lladó, A., Rami, L., and Molinuevo, J.L. (2016). CSF YKL-40 and pTau181 are related to different cerebral morphometric patterns in early AD. Neurobiol. Aging 38, 47–55.10.1016/j.neurobiolaging.2015.10.022Search in Google Scholar PubMed

Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., and Gage, F.H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934.10.1016/j.cell.2010.02.016Search in Google Scholar PubMed PubMed Central

González, H. and Pacheco, R. (2014). T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J. Neuroinflamm. 11, 201.10.1186/s12974-014-0201-8Search in Google Scholar PubMed PubMed Central

Gu, J., Polak, J.M., Tapia, F.J., Marangos, P.J., and Pearse, A.G. (1981). Neuron-specific enolase in the Merkel cells of mammalian skin. The use of specific antibody as a simple and reliable histologic marker. Am. J. Pathol. 104, 63–68.Search in Google Scholar

Hafner, A., Obermajer, N., and Kos, J. (2012). γ-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways. Biochem. J. 443, 439–450.10.1042/BJ20111351Search in Google Scholar PubMed

Haimoto, H., Takahashi, Y., Koshikawa, T., Nagura, H., and Kato, K. (1985). Immunohistochemical localization of γ-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab. Invest. 52, 257–263.Search in Google Scholar

Håkansson, I., Tisell, A., Cassel, P., Blennow, K., Zetterberg, H., Lundberg, P., Dahle, C., Vrethem, M., and Ernerudh, J. (2017). Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing-remitting multiple sclerosis. Eur. J. Neurol. 24, 703–712.10.1111/ene.13274Search in Google Scholar PubMed

Hall, S., Surova, Y., Öhrfelt, A., Swedish BioFINDER Study, Blennow, K., Zetterberg, H., and Hansson, O. (2016). Longitudinal measurements of cerebrospinal fluid biomarkers in Parkinson’s disease. Mov. Disord. 31, 898–905.10.1002/mds.26578Search in Google Scholar PubMed PubMed Central

Haque, A., Polcyn, R., Matzelle, D., and Banik, N.L. (2018). New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci. 8, E33.10.3390/brainsci8020033Search in Google Scholar PubMed PubMed Central

He, C.H., Lee, C.G., Dela Cruz, C.S., Lee, C.M., Zhou, Y., Ahangari, F., Ma, B., Herzog, E.L., Rosenberg, S.A., Li, Y., et al. (2013). Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2. Cell Rep. 4, 830–841.10.1016/j.celrep.2013.07.032Search in Google Scholar PubMed PubMed Central

Hein Née Maier, K., Köhler, A., Diem, R., Sättler, M.B., Demmer, I., Lange, P., Bähr, M., and Otto, M. (2008). Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. Neurosci. Lett. 436, 72–76.10.1016/j.neulet.2008.02.064Search in Google Scholar PubMed

Hinsinger, G., Galéotti, N., Nabholz, N., Urbach, S., Rigau, V., Demattei, C., Lehmann, S., Camu, W., Labauge, P., Castelnovo, G., et al. (2015). Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis. Mult. Scler. 21, 1251–1261.10.1177/1352458514561906Search in Google Scholar PubMed

Houston, D.R., Recklies, A.D., Krupa, J.C., and van Aalten, D.M. (2003). Structure and ligand-induced conformational change of the 39-kDa glycoprotein from human articular chondrocytes. J. Biol. Chem. 278, 30206–30212.10.1074/jbc.M303371200Search in Google Scholar PubMed

Kaiser, E., Kuzmits, R., Pregant, P., Burghuber, O., and Worofka, W. (1989). Clinical biochemistry of neuron specific enolase. Clin. Chim. Acta 183, 13–31.10.1016/0009-8981(89)90268-4Search in Google Scholar

Kato, K., Asai, R., Shimizu, A., Suzuki, F., and Ariyoshi, Y. (1983). Immunoassay of three enolase isozymes in human serum and in blood cells. Clin. Chim. Acta 127, 353–363.10.1016/0009-8981(83)90162-6Search in Google Scholar

Kazakova, M. and Sarafian, V. (2013). YKL-40 in health and disease: a challenge for joint inflammation. Biomed. Rev. 24, 49–56.10.14748/bmr.v24.21Search in Google Scholar

Kinney, J.W., Bemiller, S.M., Murtishaw, A.S., Leisgang, A.M., Salazar, A.M., and Lamb, B.T. (2018). Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 4, 575–590.10.1016/j.trci.2018.06.014Search in Google Scholar

Koch, M.W., George, S., Wall, W., Wee Yong, V., and Metz, L.M. (2015). Serum NSE level and disability progression in multiple sclerosis. J. Neurol. Sci. 350, 46–50.10.1016/j.jns.2015.02.009Search in Google Scholar

Kognole, A.A. and Payne, C.M. (2017). Inhibition of mammalian glycoprotein YKL-40: identification of the physiological ligand. J. Biol. Chem. 292, 2624–2636.10.1074/jbc.M116.764985Search in Google Scholar

Lamers, K.J., Vos, P., Verbeek, M.M., Rosmalen, F., van Geel, W.J., and van Engelen, B.G. (2003). Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patients. Brain Res. Bull. 61, 261–264.10.1016/S0361-9230(03)00089-3Search in Google Scholar

Lautner, R., Mattsson, N., Schöll, M., Augutis, K., Blennow, K., Olsson, B., and Zetterberg, H. (2011). Biomarkers for microglial activation in Alzheimer’s disease. Int. J. Alzheimers Dis. 2011, 939426.10.4061/2011/939426Search in Google Scholar PubMed PubMed Central

Lee, C.G. and Elias, J.A. (2010). Role of breast regression protein-39/YKL-40 in asthma and allergic responses. Allergy Asthma Immunol. Res. 2, 20–27.10.4168/aair.2010.2.1.20Search in Google Scholar PubMed PubMed Central

Lee, C.G., Hartl, D., Lee, G.R., Koller, B., Matsuura, H., Da Silva, C.A., Sohn, M.H., Cohn, L., Homer, R.J., Kozhich, A.A., et al. (2009). Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J. Exp. Med. 206, 1149–1166.10.1084/jem.20081271Search in Google Scholar PubMed PubMed Central

Lee, C.M., He, C.H., Nour, A.M., Zhou, Y., Ma, B., Park, J.W., Kim, K.H., Dela Cruz, C., Sharma, L., Nasr, M.L., et al. (2016). IL-13Rα2 uses TMEM219 in chitinase 3-like-1-induced signalling and effector responses. Nat. Commun. 7, 12752.10.1038/ncomms12752Search in Google Scholar PubMed PubMed Central

Leven, M., Douglas, J., Meyers, L., Lee, S., Shin, Y., and Gardner, L. (2014). Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms. Degener. Neurol. Neuromusc. Dis. 4, 49–63.10.2147/DNND.S54391Search in Google Scholar PubMed PubMed Central

Llorens, F., Schmitz, M., Knipper, T., Schmidt, C., Lange, P., Fischer, A., Hermann, P., and Zerr, I. (2017a). Cerebrospinal fluid biomarkers of Alzheimer’s disease show different but partially overlapping profile compared to vascular dementia. Front. Aging Neurosci. 9, 289.10.3389/fnagi.2017.00289Search in Google Scholar PubMed PubMed Central

Llorens, F., Thüne, K., Tahir, W., Kanata, E., Diaz-Lucena, D., Xanthopoulos, K., Kovatsi, E., Pleschka, C., Garcia-Esparcia, P., Schmitz, M., et al. (2017b). YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol. Neurodegener. 12, 83.10.1186/s13024-017-0226-4Search in Google Scholar PubMed PubMed Central

Lucas, S.M., Rothwell, N.J., and Gibson, R.M. (2006). The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147, 232–240.10.1038/sj.bjp.0706400Search in Google Scholar PubMed PubMed Central

Magdalinou, N.K., Paterson, R.W., Schott, J.M., Fox, N.C., Mummery, C., Blennow, K., Bhatia, K., Morris, H.R., Giunti, P., Warner, T.T., et al. (2015). A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 86, 1240–1247.10.1136/jnnp-2014-309562Search in Google Scholar PubMed PubMed Central

Malmeström, C., Axelsson, M., Lycke, J., Zetterberg, H., Blennow, K., and Olsson, B. (2014). CSF levels of YKL-40 are increased in MS and replaces with immunosuppressive treatment. J. Neuroimmunol. 269, 87–89.10.1016/j.jneuroim.2014.02.004Search in Google Scholar PubMed

Mañé-Martínez, M.A., Olsson, B., Bau, L., Matas, E., Cobo-Calvo, Á., Andreasson, U., Blennow, K., Romero-Pinel, L., Martínez-Yélamos, S., and Zetterberg, H. (2016). Glial and neuronal markers in cerebrospinal fluid in different types of multiple sclerosis. J. Neuroimmunol. 299, 112–117.10.1016/j.jneuroim.2016.08.004Search in Google Scholar PubMed

Marangos, P.J. and Paul, S.M. (1981). Brain levels of neuron-specific and nonneuronal enolase in Huntington’s disease. J. Neurochem. 37, 1338–1340.10.1111/j.1471-4159.1981.tb04687.xSearch in Google Scholar PubMed

Marangos, P.J. and Schmechel, D.E. (1987). Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu. Rev. Neurosci. 10, 269–295.10.1146/annurev.ne.10.030187.001413Search in Google Scholar PubMed

Marangos, P.J., Parma, A.M., and Goodwin, F.K. (1978). Functional properties of neuronal and glial isoenzymes of brain enolase. J. Neurochem. 31, 727–732.10.1111/j.1471-4159.1978.tb07847.xSearch in Google Scholar

Marangos, P.J., Schmechel, D.E., Parma, A.M., and Goodwin, F.K. (1980). Developmental profile of neuron-specific (NSE) and non-neuronal (NNE) enolase. Brain Res. 190, 185–193.10.1016/0006-8993(80)91168-3Search in Google Scholar

Nam, S., Jeong, J., Jang, T., Jung, M., Chun, B., Cha, H., and Oak, C. (2016). Neuron-specific enolase as a novel biomarker reflecting tuberculosis activity and treatment response. Kor. J. Intern. Med. 31, 694–702.10.3904/kjim.2015.407Search in Google Scholar PubMed PubMed Central

Ngernyuang, N., Yan, W., Schwartz, L.M., Oh, D., Liu, Y.B., Chen, H., and Shao, R. (2018). A heparin binding motif rich in arginine and lysine is the functional domain of YKL-40. Neoplasia 20, 182–192.10.1016/j.neo.2017.11.011Search in Google Scholar PubMed PubMed Central

Niemelä, V., Burman, J., Blennow, K., Zetterberg, H., Larsson, A., and Sundblom, J. (2018). Cerebrospinal fluid sCD27 levels indicate active T cell-mediated inflammation in premanifest Huntington’s disease. PLoS One 13, e0193492.10.1371/journal.pone.0193492Search in Google Scholar PubMed PubMed Central

Noelker, C., Hampel, H., and Dodel, R. (2011). Blood-based protein biomarkers for diagnosis and classification of neurodegenerative diseases: current progress and clinical potential. Mol. Diagn. Ther. 15, 83–102.10.1007/BF03256398Search in Google Scholar PubMed

Nooijen, P.T., Schoonderwaldt, H.C., Wevers, R.A., Hommes, O.R., and Lamers, K.J. (1997). Neuron-specific enolase, S-100 protein, myelin basic protein and lactate in CSF in dementia. Dement. Geriatr. Cogn. Disord. 8, 169–173.10.1159/000106627Search in Google Scholar PubMed

Nordengen, K., Kirsebom, B.E., Henjum, K., Selnes, P., Gísladóttir, B., Wettergreen, M., Torsetnes, S.B., Grøntvedt, G.R., Waterloo, K.K., Aarsland, D., et al. (2019). Glial activation and inflammation along the Alzheimer’s disease continuum. J. Neuroinflamm. 16, 46.10.1186/s12974-019-1399-2Search in Google Scholar PubMed PubMed Central

Ohno, M., Bauer, P.O., Kida, Y., Sakaguchi, M., Sugahara, Y., and Oyama, F. (2015). Quantitative real-time PCR analysis of YKL-40 and its comparison with mammalian chitinase mRNAs in normal human tissues using a single standard DNA. Int. J. Mol. Sci. 16, 9922–9935.10.3390/ijms16059922Search in Google Scholar PubMed PubMed Central

Öhrfelt, A., Johansson, P., Wallin, A., Andreasson, U., Zetterberg, H., Blennow, K., and Svensson, J. (2016). Increased cerebrospinal fluid levels of ubiquitin carboxyl-terminal hydrolase L1 in patients with Alzheimer’s disease. Dement. Geriatr. Cogn Dis. Extra. 6, 283–294.10.1159/000447239Search in Google Scholar PubMed PubMed Central

Oliva, D., Calì, L., Feo, S., and Giallongo, A. (1991). Complete structure of the human gene encoding neuron-specific enolase. Genomics 10, 157–165.10.1016/0888-7543(91)90496-2Search in Google Scholar

Olsson, B., Constantinescu, R., Holmberg, B., Andreasen, N., Blennow, K., and Zetterberg, H. (2013). The glial marker YKL-40 is decreased in synucleinopathies. Mov. Disord. 28, 1882–1885.10.1002/mds.25589Search in Google Scholar

Ömerhoca, S., Akkaş, S.Y., and İçen, N.K. (2018). Multiple sclerosis: diagnosis and differential diagnosis. Noro Psikiyatr. Ars. 55, S1–S9.10.29399/npa.23418Search in Google Scholar

Palumbo, B., Siepi, D., Sabalich, I., Tranfaglia, C., and Parnetti, L. (2008). Cerebrospinal fluid neuron-specific enolase: a further marker of Alzheimer’s disease? Funct. Neurol. 23, 93–96.Search in Google Scholar

Park, H.Y., Jun, C.D., Jeon, S.J., Choi, S.S., Kim, H.R., Choi, D.B., Kwak, S., Lee, H.S., Cheong, J.S., So, H.S., et al. (2012). Serum YKL-40 levels correlate with infarct volume, stroke severity, and functional outcome in acute ischemic stroke patients. PLoS One 7, e51722.10.1371/journal.pone.0051722Search in Google Scholar

Parnetti, L., Palumbo, B., Cardinali, L., Loreti, F., Chionne, F., Cecchetti, R., and Senin, U. (1995). Cerebrospinal fluid neuron-specific enolase in Alzheimer’s disease and vascular dementia. Neurosci. Lett. 183, 43–45.10.1016/0304-3940(94)11110-5Search in Google Scholar

Pouyafar, A., Heydarabad, M.Z., Mahboob, S., Mokhtarzadeh, A., and Rahbarghazi, R. (2018). Angiogenic potential of YKL-40 in the dynamics of tumor niche. Biomed. Pharmacother. 100, 478–485.10.1016/j.biopha.2018.02.050Search in Google Scholar PubMed

Prakash, M., Bodas, M., Prakash, D., Nawani, N., Khetmalas, M., Mandal, A., and Eriksson, C. (2013). Diverse pathological implications of YKL-40: answers may lie in ‘outside-in’ signaling. Cell Signal. 25, 1567–1573.10.1016/j.cellsig.2013.03.016Search in Google Scholar PubMed

Querol-Vilaseca, M., Colom-Cadena, M., Pegueroles, J., San Martín-Paniello, C., Clarimon, J., Belbin, O., Fortea, J., and Lleó, A. (2017). YKL-40 (Chitinase 3-like I) is expressed in a subset of astrocytes in Alzheimer’s disease and other tauopathies. J. Neuroinflamm. 14, 118.10.1186/s12974-017-0893-7Search in Google Scholar PubMed PubMed Central

Recklies, A.D., Ling, H., White, C., and Bernier, S.M. (2005). Inflammatory cytokines induce production of CHI3L1 by articular chondrocytes. J. Biol. Chem. 280, 41213–41221.10.1074/jbc.M510146200Search in Google Scholar PubMed

Rehli, M., Krause, S.W., and Andreesen, R. (1997). Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics 43, 221–225.10.1006/geno.1997.4778Search in Google Scholar PubMed

Rehli, M., Niller, H.H., Ammon, C., Langmann, S., Schwarzfischer, L., Andreesen, R., and Krause, S.W. (2003). Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation. J. Biol. Chem. 278, 44058–44067.10.1074/jbc.M306792200Search in Google Scholar

Renkema, G.H., Boot, R.G., Au, F.L., Donker-Koopman, W.E., Strijland, A., Muijsers, A.O., Hrebicek, M., and Aerts, J.M. (1998). Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur. J. Biochem. 251, 504–509.10.1046/j.1432-1327.1998.2510504.xSearch in Google Scholar

Ringsholt, M., Høgdall, E.V., Johansen, J.S., Price, P.A., and Christensen, L.H. (2007). YKL-40 protein expression in normal adult human tissues—an immunohistochemical study. J. Mol. Histol. 38, 33–43.10.1007/s10735-006-9075-0Search in Google Scholar

Rodrigues, F.B., Byrne, L.M., McColgan, P., Robertson, N., Tabrizi, S.J., Zetterberg, H., and Wild, E.J. (2016). Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS One 11, e0163479.10.1371/journal.pone.0163479Search in Google Scholar

Rubinsztein, D.C. (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786.10.1038/nature05291Search in Google Scholar

Schaf, D.V., Tort, A.B., Fricke, D., Schestatsky, P., Portela, L.V., Souza, D.O., and Rieder, C.R. (2005). S100B and NSE serum levels in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 11, 39–43.10.1016/j.parkreldis.2004.07.002Search in Google Scholar

Schmechel, D., Marangos, P.J., Zis, A.P., Brightman, M., and Goodwin, F.K. (1978). Brain endolases as specific markers of neuronal and glial cells. Science 199, 313–315.10.1126/science.339349Search in Google Scholar

Schmechel, D.E., Marangos, P.J., Martin, B.M., Winfield, S., Burkhart, D.S., Roses, A.D., and Ginns, E.I. (1987). Localization of neuron-specific enolase (NSE) mRNA in human brain. Neurosci. Lett. 76, 233–238.10.1016/0304-3940(87)90721-XSearch in Google Scholar

Schmidt, F.M., Mergl, R., Stach, B., Jahn, I., Gertz, H.J., and Schönknecht, P. (2014). Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer’s disease. Neurosci. Lett. 570, 81–85.10.1016/j.neulet.2014.04.007Search in Google Scholar PubMed

Shao, R., Hamel, K., Petersen, L., Cao, Q.J., Arenas, R.B., Bigelow, C., Bentley, B., and Yan, W. (2009). YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene 28, 4456–4468.10.1038/onc.2009.292Search in Google Scholar PubMed PubMed Central

Shao, R., Taylor, S.L., Oh, D.S., and Schwartz, L.M. (2015). Vascular heterogeneity and targeting: the role of YKL-40 in glioblastoma vascularization. Oncotarget 6, 40507–40518.10.18632/oncotarget.5943Search in Google Scholar PubMed PubMed Central

Sladkova, V., Mareš, J., Lubenova, B., Zapletalova, J., Stejskal, D., Hlustik, P., and Kanovsky, P. (2011). Degenerative and inflammatory markers in the cerebrospinal fluid of multiple sclerosis patients with relapsing-remitting course of disease and after clinical isolated syndrome. Neurol. Res. 33, 415–420.10.1179/016164110X12816242542535Search in Google Scholar PubMed

Smith, J.A., Das, A., Ray, S.K., and Banik, N.L. (2012). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 87, 10–20.10.1016/j.brainresbull.2011.10.004Search in Google Scholar PubMed

Spangenberg, E.E. and Green, K.N. (2017). Inflammation in Alzheimer’s disease: lessons learned from microglia-depletion models. Brain Behav. Immun. 61, 1–11.10.1016/j.bbi.2016.07.003Search in Google Scholar PubMed PubMed Central

Strimbu, K. and Tavel, J.A. (2010). What are biomarkers? Curr. Opin. HIV AIDS 5, 463–466.10.1097/COH.0b013e32833ed177Search in Google Scholar PubMed PubMed Central

Sulkava, R., Viinikka, L., Erkinjuntti, T., and Roine, R. (1988). Cerebrospinal fluid neuron-specific enolase is decreased in multi-infarct dementia, but unchanged in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 51, 549–551.10.1136/jnnp.51.4.549Search in Google Scholar PubMed PubMed Central

Villar-Piqué, A., Schmitz, M., Hermann, P., Goebel, S., Bunck, T., Varges, D., Ferrer, I., Riggert, J., Llorens, F., and Zerr, I. (2019). Plasma YKL-40 in the spectrum of neurodegenerative dementia. J. Neuroinflamm. 16, 145.10.1186/s12974-019-1531-3Search in Google Scholar PubMed PubMed Central

Vinther-Jensen, T., Budtz-Jørgensen, E., Simonsen, A.H., Nielsen, J.E., and Hjermind, L.E. (2014). YKL-40 in cerebrospinal fluid in Huntington’s disease—a role in pathology or a nonspecific response to inflammation? Parkinsonism Relat. Disord. 20, 1301–1303.10.1016/j.parkreldis.2014.08.011Search in Google Scholar PubMed

Vizin, T. and Kos, J. (2015). Gamma-enolase: a well-known tumour marker, with a less-known role in cancer. Radiol. Oncol. 49, 217–226.10.1515/raon-2015-0035Search in Google Scholar PubMed PubMed Central

Wenning, G.K. and Quinn, N.P. (1997). Parkinsonism. Multiple system atrophy. Baillieres Clin. Neurol. 6, 187–204.Search in Google Scholar

Wennström, M., Surova, Y., Hall, S., Nilsson, C., Minthon, L., Hansson, O., and Nielsen, H.M. (2015). The inflammatory marker YKL-40 is elevated in cerebrospinal fluid from patients with Alzheimer’s but not Parkinson’s disease or dementia with Lewy bodies. PLoS One 10, e0135458.10.1371/journal.pone.0135458Search in Google Scholar PubMed PubMed Central

Yamanaka, K. and Kominea, O. (2018). The multi-dimensional roles of astrocytes in ALS. Neurosci. Res. 126, 31–38.10.1016/j.neures.2017.09.011Search in Google Scholar PubMed

Zeng, X.-S., Geng, W.-S., Jia, J.-J., Chen, L., and Zhang, P.P. (2018). Cellular and molecular basis of neurodegeneration in Parkinson disease. Front. Aging Neurosci. 10, 109.10.3389/fnagi.2018.00109Search in Google Scholar PubMed PubMed Central

Zhou, Y., He, C.H., Herzog, E.L., Peng, X., Lee, C.M., Nguyen, T.H., Gulati, M., Gochuico, B.R., Gahl, W.A., Slade, M.L., et al. (2015). Chitinase 3-like-1 and its receptors in Hermansky-Pudlak syndrome-associated lung disease. J. Clin. Invest. 125, 3178–3192.10.1172/JCI79792Search in Google Scholar PubMed PubMed Central

Zhou, Y., He, C.H., Yang, D.S., Nguyen, T., Cao, Y., Kamle, S., Lee, C.M., Gochuico, B.R., Gahl, W.A., Shea, B.S., et al. (2018). Galectin-3 interacts with the CHI3L1 axis and contributes to Hermansky-Pudlak syndrome lung disease. J. Immunol. 200, 2140–2153.10.4049/jimmunol.1701442Search in Google Scholar PubMed PubMed Central

Received: 2019-10-30
Accepted: 2019-12-22
Published Online: 2020-02-11
Published in Print: 2020-07-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0100/html
Scroll to top button