Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 18, 2019

Exosome-encapsulated microRNAs as promising biomarkers for Alzheimer’s disease

  • Jian-jiao Chen , Guang Yang , Qing-qing Yan , Jie Zhao EMAIL logo and Shao Li EMAIL logo

Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that locks into long clinical latency and low curative ratio. Therefore, early diagnosis before the clinical phase is quite essential and may be effective for therapeutic prevention. Peripheral blood or cerebrospinal fluid biomarkers symbolizing functional neuronal impairment are gradually applied to diagnose AD in research studies. Exosomes have generated immense interest in the diagnosis field of neurodegenerative disorders after confirmation of their roles as mediators, delivering important proteins and microRNAs (miRNAs) in intercellular communication. Compelling research results reveal that miRNAs released from exosomes modulate expression and function of amyloid precursor proteins and tau proteins. These findings open up possibility that dysfunctional exosomal miRNAs may influence AD progression. In this review, we summarized the existing knowledge of exosomal miRNAs and their involvement in AD, emphasizing their potential to serve as diagnostic biomarkers during the preclinical phase of AD.

Award Identifier / Grant number: 81571061

Award Identifier / Grant number: 81671061

Award Identifier / Grant number: LZ2017001

Funding statement: This study was funded by grants from The National Sciences Foundation of China (81571061, 81671061) and Scientific Study Project for Institutes of Higher Learning, Ministry of Education, Liaoning Province (LZ2017001) and Liaoning Revitalization Talents Program.

References

Aksoy-Aksel, A., Zampa, F., and Schratt, G. (2014). MicroRNAs and synaptic plasticity – a mutual relationship. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130515.10.1098/rstb.2013.0515Search in Google Scholar PubMed PubMed Central

Alzheimer Association. (2016). Alzheimer’s disease facts and figures. Alzheimers Dement. 12, 459–509.10.1016/j.jalz.2016.03.001Search in Google Scholar PubMed

Cai, M., Wang, Y.W., Xu, S.H., Qiao, S., Shu, Q.F., Du, J.Z., Li, Y.G., and Liu, X.L. (2018). Regulatory effects of the long noncoding RNA RP11543N12.1 and microRNA3243p axis on the neuronal apoptosis induced by the inflammatory reactions of microglia. Int. J. Mol. Med. 42, 1741–1755.Search in Google Scholar

Canter, R., Penney, J., and Tsai, L. (2016). The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature. 539, 187–196.10.1038/nature20412Search in Google Scholar PubMed

Chen, J.J., Zhao, B., Zhao, J., and Li, S. (2017). Potential roles of exosomal microRNAs as diagnostic biomarkers and therapeutic application in Alzheimer’s disease. Neural Plast. 2017, 1–12.10.1155/2017/7027380Search in Google Scholar PubMed PubMed Central

Cheng, L., Quek, C., Sun, X., Bellingham, S., and Hill, A. (2013). The detection of microRNA associated with Alzheimer’s disease in biological fluids using next-generation sequencing technologies. Front Genet. 4, 150.10.3389/fgene.2013.00150Search in Google Scholar PubMed PubMed Central

Cheng, L., Doecke, J.D., Sharples, R.A., Villemagne, V.L., Fowler, C.J., Rembach, A., Martins, R.N., Rowe, C.C., Macaulay, S.L., Masters, C.L. et al. (2015). Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol. Psychiatry. 20, 1188–1196.10.1038/mp.2014.127Search in Google Scholar PubMed

Cogoni, C., Ruberti, F., and Barbato, C. (2015). MicroRNA landscape in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets. 14, 168–175.10.2174/1871527314666150116123305Search in Google Scholar PubMed

Dehghani, R., Rahmani, F., and Rezaei, N. (2018). MicroRNA in Alzheimer’s disease revisited: implications for major neuropathological mechanisms. Rev. Neurosci. 29, 161–182.10.1515/revneuro-2017-0042Search in Google Scholar PubMed

Deng, Y., Ding, Y., and Hou, D. (2014). Research status of the regulation of miRNA on BACE1. Int. J. Neurosci. 124, 474–477.10.3109/00207454.2013.858249Search in Google Scholar PubMed

Faridani, O., Abdullayev, I., Hagemann-Jensen, M., Schell, J., Lanner, F., and Sandberg, R. (2016). Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 34, 1264–1266.10.1038/nbt.3701Search in Google Scholar PubMed

Fernandes, A., Ribeiro, A.R., Monteiro, M., Garcia, G., Vaz, A.R., and Brites, D. (2018). Secretome from SH-SY5Y APPSwe cells trigger time-dependent CHME3 microglia activation phenotypes, ultimately leading to miR-21 exosome shuttling. Biochimie 155, 67–82.10.1016/j.biochi.2018.05.015Search in Google Scholar

Fiandaca, M.S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J.B., Abner, E.L., Petersen, R.C., Federoff, H.J., Miller, B.L., et al. (2015). Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. 11, 600–607.e601.10.1016/j.jalz.2014.06.008Search in Google Scholar

Frisoni, G., Boccardi, M., Barkhof, F., Blennow, K., Cappa, S., Chiotis, K., Démonet, J., Garibotto, V., Giannakopoulos, P., Gietl, A., et al. (2017). Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 16, 661–676.10.1016/S1474-4422(17)30159-XSearch in Google Scholar

Goetzl, E., Mustapic, M., Kapogiannis, D., Eitan, E., Lobach, I., Goetzl, L., Schwartz, J., and Miller, B. (2016). Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J. 30, 3853–3859.10.1096/fj.201600756RSearch in Google Scholar PubMed PubMed Central

Goetzl, E.J., Schwartz, J.B., Abner, E.L., Jicha, G.A., and Kapogiannis, D. (2018). High complement levels in astrocyte-derived exosomes of Alzheimer disease. Ann. Neurol. 83, 544–552.10.1002/ana.25172Search in Google Scholar PubMed PubMed Central

Higa, G., de Sousa, E., Walter, L., Kinjo, E., Resende, R., and Kihara, A. (2014). MicroRNAs in neuronal communication. Mol. Neurobiol. 49, 1309–1326.10.1007/s12035-013-8603-7Search in Google Scholar PubMed

Huang, W. and Li, M. (2009). Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol. Psychiatry 65, 702–705.10.1016/j.biopsych.2008.11.024Search in Google Scholar PubMed PubMed Central

Iranifar, E., Seresht, B.M., Momeni, F., Fadaei, E., Mehr, M.H., Ebrahimi, Z., Rahmati, M., Kharazinejad, E., and Mirzaei, H. (2019). Exosomes and microRNAs: new potential therapeutic candidates in Alzheimer disease therapy. J. Cell Physiol. 234, 2296–2305.10.1002/jcp.27214Search in Google Scholar PubMed

Jo, S., Yarishkin, O., Hwang, Y., Chun, Y., Park, M., Woo, D., Bae, J., Kim, T., Lee, J., Chun, H., et al. (2014). GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 20, 886–896.10.1038/nm.3639Search in Google Scholar PubMed PubMed Central

Kiko, T., Nakagawa, K., Tsuduki, T., Furukawa, K., Arai, H., and Miyazawa, T. (2014). MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J. Alzheimers Dis. 39, 253–259.10.3233/JAD-130932Search in Google Scholar PubMed

Kim, D. and Tsai, L. (2009). Bridging physiology and pathology in AD. Cell. 137, 997–1000.10.1016/j.cell.2009.05.042Search in Google Scholar PubMed

Kumar, S. and Reddy, P. (2016). Are circulating microRNAs peripheral biomarkers for Alzheimer’s disease? Biochim. Biophys. Acta. 1862, 1617–1627.10.1016/j.bbadis.2016.06.001Search in Google Scholar PubMed PubMed Central

Kumar, S., Vijayan, M., Bhatti, J., and Reddy, P. (2017). MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog. Mol. Biol. Transl. Sci. 146, 47–94.10.1016/bs.pmbts.2016.12.013Search in Google Scholar PubMed

Lambert, T., Storm, D., and Sullivan, J. (2010). MicroRNA132 modulates short-term synaptic plasticity but not basal release probability in hippocampal neurons. PLoS One 5, e15182.10.1371/journal.pone.0015182Search in Google Scholar PubMed PubMed Central

Lei, X., Lei, L., Zhang, Z., Zhang, Z., and Cheng, Y. (2015). Down-regulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’s disease. Int. J. Clin. Exp. Pathol. 8, 1565–1574.Search in Google Scholar

Li, X., Wang, Z., Tan, L., Wang, Y., Lu, C., Chen, R., Zhang, S., Gao, Y., Liu, Y., Yin, Y., et al. (2017). Correcting miR92a-vGAT-mediated GABAergic dysfunctions rescues human tau-induced anxiety in mice. Mol. Ther. 25, 140–152.10.1016/j.ymthe.2016.10.010Search in Google Scholar PubMed PubMed Central

Li, W.Y., Zhang, W.T., Cheng, Y.X., Liu, Y.C., Zhai, F.G., Sun, P., Li, H.T., Deng, L.X., Zhu, X.F., and Wang, Y. (2018). Inhibition of KLF7-targeting microRNA 146b promotes sciatic nerve regeneration. Neurosci. Bull. 34, 419–437.10.1007/s12264-018-0206-xSearch in Google Scholar PubMed PubMed Central

Liu, C.G., Song, J., Zhang, Y.Q., and Wang, P.C. (2014). MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol. Med. Rep. 10, 2395–2400.10.3892/mmr.2014.2484Search in Google Scholar PubMed

Lugli, G., Cohen, A.M., Bennett, D.A., Shah, R.C., Fields, C.J., Hernandez, A.G., and Smalheiser, N.R. (2015). Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One 10, e0139233.10.1371/journal.pone.0139233Search in Google Scholar PubMed PubMed Central

Miller, P. and Aricescu, A. (2014). Crystal structure of a human GABAA receptor. Nature 512, 270–275.10.1038/nature13293Search in Google Scholar PubMed PubMed Central

Nadim, W., Simion, V., Benedetti, H., Pichon, C., Baril, P., and Morisset-Lopez, S. (2017). MicroRNAs in neurocognitive dysfunctions: new molecular targets for pharmacological treatments? Curr. Neuropharmacol. 15, 260–275.10.2174/1570159X14666160709001441Search in Google Scholar PubMed PubMed Central

Nigro, A., Colombo, F., Casella, G., Finardi, A., Verderio, C., and Furlan, R. (2016). Myeloid extracellular vesicles: messengers from the demented brain. Front. Immunol. 7, 17.10.3389/fimmu.2016.00017Search in Google Scholar PubMed PubMed Central

Nolte-’t Hoen, E., van der Vlist, E., Aalberts, M., Mertens, H., Bosch, B., Bartelink, W., Mastrobattista, E., van Gaal, E., Stoorvogel, W., Arkesteijn, G., et al. (2012). Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8, 712–720.10.1016/j.nano.2011.09.006Search in Google Scholar PubMed PubMed Central

Pant, S., Hilton, H., and Burczynski, M. (2012). The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 83, 1484–1494.10.1016/j.bcp.2011.12.037Search in Google Scholar PubMed PubMed Central

Pogue, A.I. and Lukiw, W.J. (2018). Up-regulated pro-inflammatory microRNAs (miRNAs) in Alzheimer’s disease (AD) and age-related macular degeneration (AMD). Cell Mol. Neurobiol. 38, 1021–1031.10.1007/s10571-017-0572-3Search in Google Scholar PubMed

Prasad, K.N. (2017). Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer’s disease. Mech. Ageing Dev. 162, 63–71.10.1016/j.mad.2016.12.003Search in Google Scholar PubMed

Properzi, F., Ferroni, E., Poleggi, A., and Vinci, R. (2015). The regulation of exosome function in the CNS: implications for neurodegeneration. Swiss Med. Wkly. 145, w14204.10.4414/smw.2015.14204Search in Google Scholar PubMed

Rahman, M., Islam, R., Islam, S., Mondal, S., and Amin, M. (2012). MiRANN: a reliable approach for improved classification of precursor microRNA using Artificial Neural Network model. Genomics 99, 189–194.10.1016/j.ygeno.2012.02.001Search in Google Scholar PubMed

Riancho, J., Vazquez-Higuera, J.L., Pozueta, A., Lage, C., Kazimierczak, M., Bravo, M., Calero, M., Gonalezalez, A., Rodriguez, E., Lleo, A., et al. (2017). MicroRNA profile in patients with Alzheimer’s disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. J. Alzheimers Dis. 57, 483–491.10.3233/JAD-161179Search in Google Scholar PubMed

Saba, R., Störchel, P., Aksoy-Aksel, A., Kepura, F., Lippi, G., Plant, T., and Schratt, G. (2012). Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol. Cell. Biol. 32, 619–632.10.1128/MCB.05896-11Search in Google Scholar PubMed PubMed Central

Scott, H., Tamagnini, F., Narduzzo, K., Howarth, J., Lee, Y., Wong, L., Brown, M., Warburton, E., Bashir, Z., and Uney, J. (2012). MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur. J. Neurosci. 36, 2941–2948.10.1111/j.1460-9568.2012.08220.xSearch in Google Scholar PubMed PubMed Central

Sengupta, J., Pochiraju, S., Pochiraju, S., Kannampalli, P., Bruckert, M., Addya, S., Yadav, P., Miranda, A., Shaker, R., and Banerjee, B. (2013). MicroRNA-mediated GABA Aα-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats. Pain. 154, 59–70.10.1016/j.pain.2012.09.002Search in Google Scholar

Sierksma, A., Lu, A., Salta, E., Vanden Eynden, E., Callaerts-Vegh, Z., D’Hooge, R., Blum, D., Buee, L., Fiers, M., and De Strooper, B. (2018). Deregulation of neuronal miRNAs induced by amyloid-beta or TAU pathology. Mol. Neurodegener. 13, 54.10.1186/s13024-018-0285-1Search in Google Scholar

Tabaraud, F., Leman, J., Milor, A., Roussie, J., Barrière, G., Tartary, M., Boutros-Toni, F., and Rigaud, M. (2012). Alzheimer CSF biomarkers in routine clinical setting. Acta Neurol. Scand. 125, 416–423.10.1111/j.1600-0404.2011.01592.xSearch in Google Scholar

Tan, L., Yu, J., Liu, Q., Tan, M., Zhang, W., Hu, N., Wang, Y., Sun, L., Jiang, T., and Tan, L. (2014a). Circulating miR-125b as a biomarker of Alzheimer’s disease. J. Neurol. Sci. 336, 52–56.10.1016/j.jns.2013.10.002Search in Google Scholar

Tan, L., Yu, J., Tan, M., Liu, Q., Wang, H., Zhang, W., Jiang, T., and Tan, L. (2014b). Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 40, 1017–1027.10.3233/JAD-132144Search in Google Scholar

Thery, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750.10.1080/20013078.2018.1535750Search in Google Scholar

Van Giau, V. and An, S.S. (2016). Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. J. Neurol. Sci. 360, 141–152.10.1016/j.jns.2015.12.005Search in Google Scholar

Vella, L., Hill, A., and Cheng, L. (2016). Focus on extracellular vesicles: exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and Parkinson’s disease. Int. J. Mol. Sci. 17, 173.10.3390/ijms17020173Search in Google Scholar

Villemagne, V., Burnham, S., Bourgeat, P., Brown, B., Ellis, K., Salvado, O., Szoeke, C., Macaulay, S., Martins, R., Maruff, P., et al. (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12, 357–367.10.1016/S1474-4422(13)70044-9Search in Google Scholar

Wang, Y., Balaji, V., Kaniyappan, S., Krüger, L., Irsen, S., Tepper, K., Chandupatla, R., Maetzler, W., Schneider, A., Mandelkow, E., et al. (2017). The release and trans-synaptic transmission of Tau via exosomes. Mol. Neurodegener. 12, 5.10.1186/s13024-016-0143-ySearch in Google Scholar PubMed PubMed Central

Wang, D., Zhang, X., Wang, M., Zhou, D., Pan, H., Shu, Q., and Sun,B. (2018). Early Activation of astrocytes does not affect amyloid plaque load in an animal model of Alzheimer’s disease. Neurosci. Bull. 34, 912–920.10.1007/s12264-018-0262-2Search in Google Scholar PubMed PubMed Central

Wayman, G., Davare, M., Ando, H., Fortin, D., Varlamova, O., Cheng, H., Marks, D., Obrietan, K., Soderling, T., Goodman, R., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc. Natl. Acad. Sci. U.S.A. 105, 9093–9098.10.1073/pnas.0803072105Search in Google Scholar PubMed PubMed Central

Whitehead, G., Regan, P., Whitcomb, D., and Cho, K. (2017). Ca(2+)-permeable AMPA receptor: A new perspective on amyloid-beta mediated pathophysiology of Alzheimer’s disease. Neuropharmacology 112, 221–227.10.1016/j.neuropharm.2016.08.022Search in Google Scholar PubMed

Winston, C.N., Goetzl, E.J., Akers, J.C., Carter, B.S., Rockenstein, E.M., Galasko, D., Masliah, E., and Rissman, R.A. (2016). Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement (Amst.) 3, 63–72.10.1016/j.dadm.2016.04.001Search in Google Scholar PubMed PubMed Central

Wu, H., Ong, K., Seeher, K., Armstrong, N., Thalamuthu, A., Brodaty, H., Sachdev, P., and Mather, K. (2016). Circulating microRNAs as biomarkers of Alzheimer’s disease: a systematic review. J. Alzheimers Dis. 49, 755–766.10.3233/JAD-150619Search in Google Scholar PubMed

Wu, X., Zheng, T., and Zhang, B. (2017). Exosomes in Parkinson’s disease. Neurosci. Bull. 33, 331–338.10.1007/s12264-016-0092-zSearch in Google Scholar PubMed PubMed Central

Yang, T.T., Liu, C.G., Gao, S.C., Zhang, Y., and Wang, P.C. (2018). The serum exosome derived microRNA-135a, -193b, and -384 were potential Alzheimer’s disease biomarkers. Biomed. Environ. Sci. 31, 87–96.Search in Google Scholar

Zhang, Y., Tang, C., Yu, T., Zhang, R., Zheng, H., and Yan, W. (2017). MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells. Genome Biol. 18, 105.10.1186/s13059-017-1243-xSearch in Google Scholar PubMed PubMed Central

Received: 2019-01-02
Accepted: 2019-04-17
Published Online: 2019-07-18
Published in Print: 2019-12-18

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0001/html
Scroll to top button