Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 28, 2018

Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy

  • Ghazaleh Kheiri , Mahsa Dolatshahi , Farzaneh Rahmani and Nima Rezaei EMAIL logo

Abstract

A myriad of environmental and genetic factors, as well as the physiologic process of aging, contribute to Alzheimer’s disease (AD) pathology. Neuroinflammation is and has been a focus of interest, as a common gateway for initiation of many of the underlying pathologies of AD. Amyloid beta (Aβ) toxicity, increasing RAGE expression, tau hyperphosphorylation, induction of apoptosis, and deregulated autophagy are among other mechanisms, partly entangled and being explained by activation of mitogen-activated protein kinase (MAPK) and MAPK signaling. p38 MAPK is the most essential regulator of Aβ induced toxicity from this family. p38 induces NF-κB activation, glutamate excitotoxicity, and disruption of synaptic plasticity, which are other implications of all justifying the p38 MAPK as a potential target to break the vicious Aβ toxicity cycle. Until recently, many in vivo and in vitro studies have investigated the effects of p38 MAPK inhibitors in AD. The pyridinyl imidazole compounds SB202190 and SB203580 have shown promising anti-apoptotic results in vivo. MW108 inhibits activation of p38 and is able to postpone cognitive decline in animal models. The PD169316, with anti-inflammatory, anti-oxidative, and anti-apoptotic features, has improved spatial memory in vivo. Natural compounds from Camellia sinensis (green tea), polyphenols from olive oil, pinocembrin from propolis, and the puerarine extract isoflavones, have shown strong anti-apoptotic features, mediated by p38 MAPK inhibition. Use of these drug targets is limited due to central nervous system side effects or cross-reactivity with other kinases, predicting the low efficacy of these drugs in clinical trials.

Acknowledgments

Tehran University of Medical Sciences supported this study.

  1. Conflict of interest statement: The authors declare no conflict of interest.

References

Abdoulaye, I.A. and Guo, Y.J. (2016). A review of recent advances in neuroprotective potential of 3-N-butylphthalide and its derivatives. BioMed Res. Int. 2016, 9.10.1155/2016/5012341Search in Google Scholar

Alam, J. and Scheper, W. (2016). Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain. Autophagy 12, 2516–2520.10.1080/15548627.2016.1238555Search in Google Scholar PubMed

Arunsundar, M., Shanmugarajan, T.S., and Ravichandran, V. (2015). 3,4-Dihydroxyphenylethanol attenuates spatio-cognitive deficits in an Alzheimer’s disease mouse model: modulation of the molecular signals in neuronal survival-apoptotic programs. Neurotox. Res. 27, 143–155.10.1007/s12640-014-9492-xSearch in Google Scholar

Ashabi, G., Ramin, M., Azizi, P., Taslimi, Z., Alamdary, S.Z., Haghparast, A., Ansari, N., Motamedi, F., and Khodagholi, F. (2012). ERK and p38 inhibitors attenuate memory deficits and increase CREB phosphorylation and PGC-1alpha levels in Aβ-injected rats. Behav. Brain Res. 232, 165–173.10.1016/j.bbr.2012.04.006Search in Google Scholar PubMed

Ashabi, G., Alamdary, S.Z., Ramin, M., and Khodagholi, F. (2013). Reduction of hippocampal apoptosis by intracerebroventricular administration of extracellular signal-regulated protein kinase and/or p38 inhibitors in amyloid beta rat model of Alzheimer’s disease: involvement of nuclear-related factor-2 and nuclear factor-κB. Basic Clin. Pharmacol. Toxicol. 112, 145–155.10.1111/bcpt.12000Search in Google Scholar PubMed

Auld, D.S., Kornecook, T.J., Bastianetto, S., and Quirion, R. (2002). Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 68, 209–245.10.1016/S0301-0082(02)00079-5Search in Google Scholar PubMed

Bachstetter, A.D., Xing, B., de Almeida, L., Dimayuga, E.R., Watterson, D.M., and Van Eldik, L.J. (2011). Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J. Neuroinflamm. 8, 79.10.1186/1742-2094-8-79Search in Google Scholar

Bachstetter, A.D., Watterson, D.M., and Van Eldik, L.J. (2014). Target engagement analysis and link to pharmacodynamic endpoint for a novel class of CNS-penetrant and efficacious p38alpha MAPK inhibitors. J. Neuroimmune Pharmacol. 9, 454–460.10.1007/s11481-014-9543-3Search in Google Scholar PubMed

Bartus, R.T. and Dean, R.L. (2009). Pharmaceutical treatmentfor cognitive deficits in Alzheimer’s disease and other neurodegenerative conditions: exploring new territory using traditional tools and established maps. Psychopharmacology (Berl) 202, 15–36.10.1007/s00213-008-1365-7Search in Google Scholar

Bellucci, A., Westwood, A.J., Ingram, E., Casamenti, F., Goedert, M., and Spillantini, M.G. (2004). Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am. J. Pathol. 165, 1643–1652.10.1016/S0002-9440(10)63421-9Search in Google Scholar PubMed

Bennett, B.L., Sasaki, D.T., Murray, B.W., O’Leary, E.C., Sakata, S.T., Xu, W., Leisten, J.C., Motiwala, A., Pierce, S., Satoh, Y., et al. (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686.10.1073/pnas.251194298Search in Google Scholar PubMed PubMed Central

Blum, S., Moore, A.N., Adams, F., and Dash, P.K. (1999). A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J. Neurosci. 19, 3535–3544.10.1523/JNEUROSCI.19-09-03535.1999Search in Google Scholar PubMed

Bodles, A.M. and Barger, S.W. (2005). Secreted beta-amyloid precursor protein activates microglia via JNK and p38-MAPK. Neurobiol. Aging 26, 9–16.10.1016/j.neurobiolaging.2004.02.022Search in Google Scholar PubMed

Bramham, C.R., Alme, M.N., Bittins, M., Kuipers, S.D., Nair, R.R., Pai, B., Panja, D., Schubert, M., Soule, J., Tiron, A., et al. (2010). The Arc of synaptic memory. Exp. Brain Res. 200, 125–140.10.1007/s00221-009-1959-2Search in Google Scholar PubMed PubMed Central

Bullido, M.J., Martinez-Garcia, A., Tenorio, R., Sastre, I., Munoz, D.G., Frank, A., and Valdivieso, F. (2008). Double stranded RNA activated EIF2 α kinase (EIF2AK2; PKR) is associated with Alzheimer’s disease. Neurobiol. Aging 29, 1160–1166.10.1016/j.neurobiolaging.2007.02.023Search in Google Scholar PubMed

Burns, A. and Iliffe, S. (2009). Alzheimer’s disease. Br. Med. J. 338, b158.10.1136/bmj.b158Search in Google Scholar PubMed

Cacquevel, M., Lebeurrier, N., Chéenne, S., and Vivien, D. (2004). Cytokines in neuroinflammation and Alzheimer’s disease. Curr. Drug Targets 5, 529–534.10.2174/1389450043345308Search in Google Scholar PubMed

Cai, Y., Sun, Z., Jia, H., Luo, H., Ye, X., Wu, Q., Xiong, Y., Zhang, W., and Wan, J. (2017). Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p. Front. Mol. Neurosci. 10, 27.10.3389/fnmol.2017.00027Search in Google Scholar PubMed PubMed Central

Cao, G., Ying, P., Yan, B., Xue, W., Li, K., Shi, A., Sun, T., Yan, J., and Hu, X. (2015). Pharmacokinetics, safety, and tolerability of single and multiple-doses of pinocembrin injection administered intravenously in healthy subjects. J. Ethnopharmacol. 168, 31–36.10.1016/j.jep.2015.03.041Search in Google Scholar PubMed

Cardaci, S., Filomeni, G., Rotilio, G., and Ciriolo, M.R. (2010). p38(MAPK)/p53 signalling axis mediates neuronal apoptosis in response to tetrahydrobiopterin-induced oxidative stress and glucose uptake inhibition: implication for neurodegeneration. Biochem. J. 430, 439–451.10.1042/BJ20100503Search in Google Scholar PubMed

Cargnello, M. and Roux, P.P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75, 50–83.10.1128/MMBR.00031-10Search in Google Scholar PubMed PubMed Central

Chan, S.H., Sun, E.Y., and Chang, A.Y. (2010). Extracellular signal-regulated kinase 1/2 plays a pro-life role in experimental brain stem death via MAPK signal-interacting kinase at rostral ventrolateral medulla. J. Biomed. Sci. 17, 17.10.1186/1423-0127-17-17Search in Google Scholar PubMed PubMed Central

Chang, C.H., Chen, C.Y., Chiou, J.Y., Peng, R.Y., and Peng, C.H. (2010a). Astaxanthine secured apoptotic death of PC12 cells induced by β-amyloid peptide 25-35: its molecular action targets. J. Med. Food 13, 548–556.10.1089/jmf.2009.1291Search in Google Scholar PubMed

Chang, K.H., de Pablo, Y., Lee, H.P., Lee, H.G., Smith, M.A., and Shah, K. (2010b). Cdk5 is a major regulator of p38 cascade: relevance to neurotoxicity in Alzheimer’s disease. J. Neurochem. 113, 1221–1229.10.1111/j.1471-4159.2010.06687.xSearch in Google Scholar PubMed

Chen, L.-L., Wang, Y.-B., Song, J.-X., Deng, W.-K., Lu, J.-H., Ma, L.-L., Yang, C.B., Li, M., and Xue, Y. (2017). Phosphoproteome-based kinase activity profiling reveals the critical role of MAP2K2 and PLK1 in neuronal autophagy. Autophagy 13, 1969–1980.10.1080/15548627.2017.1371393Search in Google Scholar PubMed PubMed Central

Chicca, A., Gachet, M.S., Petrucci, V., Schuehly, W., Charles, R.P., and Gertsch, J. (2015). 4′-O-methylhonokiol increases levels of 2-arachidonoyl glycerol in mouse brain via selective inhibition of its COX-2-mediated oxygenation. J. Neuroinflamm. 12, 89.10.1186/s12974-015-0307-7Search in Google Scholar PubMed PubMed Central

Choi, I.S., Lee, Y.J., Choi, D.Y., Lee, Y.K., Lee, Y.H., Kim, K.H., Kim, Y.H., Jeon, Y.H., Kim, E.H., Han, S.B., et al. (2011). 4-O-Methylhonokiol attenuated memory impairment through modulation of oxidative damage of enzymes involving amyloid-beta generation and accumulation in a mouse model of Alzheimer’s disease. J. Alzheimers Dis. 27, 127–141.10.3233/JAD-2011-110545Search in Google Scholar PubMed

Chowdhury, S., Shepherd, J.D., Okuno, H., Lyford, G., Petralia, R.S., Plath, N., Kuhl, D., Huganir, R.L., and Worley, P.F. (2006). Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459.10.1016/j.neuron.2006.08.033Search in Google Scholar PubMed PubMed Central

Chueh, F.S., Chang, C.P., Chio, C.C., and Lin, M.T. (2004). Puerarin acts through brain serotonergic mechanisms to induce thermal effects. J. Pharmacol. Sci. 96, 420–427.10.1254/jphs.FP0040424Search in Google Scholar PubMed

Colie, S., Sarroca, S., Palenzuela, R., Garcia, I., Matheu, A., Corpas, R., Dotti C.G., Esteban, J.A., Sanfeliu, C., and Nebreda, A.R. (2017). Neuronal p38 alpha mediates synaptic and cognitive dysfunction in an Alzheimer’s mouse model by controlling beta-amyloid production. Sci. Rep. 7, 45306.10.1038/srep45306Search in Google Scholar PubMed PubMed Central

Correa, S.A., Hunter, C.J., Palygin, O., Wauters, S.C., Martin, K.J., McKenzie, C., McKelvey, K., Morris, R.G., Pankratov, Y., Arthur, J.S., et al. (2012). MSK1 regulates homeostatic and experience-dependent synaptic plasticity. J. Neurosci. 32, 13039–13051.10.1523/JNEUROSCI.0930-12.2012Search in Google Scholar PubMed

Cuadrado, A. and Nebreda, A.R. (2010). Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429, 403–417.10.1042/BJ20100323Search in Google Scholar PubMed

Cuenda, A., Rouse, J., Doza, Y.N., Meier, R., Cohen, P., Gallagher, T.F., Young, P.R., Lee, J.C. (1995). SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229–233.10.1016/0014-5793(95)00357-FSearch in Google Scholar PubMed

CZQP Technology. (2016). Phase II study of pinocembrin injection to treat ischemic stroke. [Available from: https://clinicaltrials.gov/ct2/show/NCT02059785].Search in Google Scholar

Daniels, W.M., Hendricks, J., Salie, R., and Taljaard, J.J. (2001). The role of the MAP-kinase superfamily in beta-amyloid toxicity. Metab. Brain Dis. 16, 175–185.10.1023/A:1012541011123Search in Google Scholar PubMed

de la Torre, A.V., Junyent, F., Folch, J., Pelegrí, C., Vilaplana, J., Auladell, C., Beas-Zarate, C., Pallàs, M., Verdaguer, E., and Camins, A. (2013). PI3 k/akt inhibition induces apoptosis through p38 activation in neurons. Pharmacol. Res. 70, 116–125.10.1016/j.phrs.2013.01.007Search in Google Scholar PubMed

Dehghani, R., Rahmani, F., and Rezaei, N. (2017). MicroRNA in Alzheimer’s disease revisited: implications for major neuropathological mechanisms. Rev. Neurosci. 29, 161–182.10.1515/revneuro-2017-0042Search in Google Scholar

Delgado, M., Varela, N., and Gonzalez-Rey, E. (2008). Vasoactive intestinal peptide protects against β-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia 56, 1091–1103.10.1002/glia.20681Search in Google Scholar PubMed

Derijard, B., Hibi, M., Wu, I.H., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R.J. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037.10.1016/0092-8674(94)90380-8Search in Google Scholar PubMed

Desideri, E., Vegliante, R., Cardaci, S., Nepravishta, R., Paci, M., and Ciriolo, M.R. (2014). MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation. Autophagy 10, 1652–1665.10.4161/auto.29456Search in Google Scholar PubMed PubMed Central

Devi, L., Alldred, M.J., Ginsberg, S.D., and Ohno, M. (2012). Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One 7, e32792.10.1371/journal.pone.0032792Search in Google Scholar PubMed PubMed Central

Djordjevic, S. and Driscoll, P.C. (2002). Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases. Trends Biochem. Sci. 27, 426–432.10.1016/S0968-0004(02)02136-9Search in Google Scholar PubMed

Dong, W., Embury, C.M., Lu, Y., Whitmire, S.M., Dyavarshetty, B., Gelbard, H.A., Gendelman, H.E., and Kiyota, T. (2016). The mixed-lineage kinase 3 inhibitor URMC-099 facilitates microglial amyloid-β degradation. J. Neuroinflammation 13, 184.10.1186/s12974-016-0646-zSearch in Google Scholar PubMed PubMed Central

Dorostkar, M.M., Zou, C., Blazquez-Llorca, L., and Herms, J. (2015). Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol. 130, 1–19.10.1007/s00401-015-1449-5Search in Google Scholar PubMed PubMed Central

Emamian, E.S. (2012). AKT/GSK3 signaling pathway and schizophrenia. Front. Mol. Neurosci. 5, 33.10.3389/fnmol.2012.00033Search in Google Scholar PubMed PubMed Central

Endersby, R. and Baker, S. (2008). PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene 27, 5416.10.1038/onc.2008.239Search in Google Scholar PubMed

Fang, F., Yu, Q., Arancio, O., Chen, D., Gore, S.S., Yan, S.S., and Yan, S.F. (2018). RAGE mediates Aβ accumulation in a mouse model of Alzheimer’s disease via modulation of β- and γ-secretase activity. Hum. Mol. Genet. 27, 1002–1014.10.1093/hmg/ddy017Search in Google Scholar PubMed PubMed Central

Fernandez, F., Soon, I., Li, Z., Kuan, T.C., Min, D.H., Wong, E.S.-M., Demidov, O.N., Paterson, M.C., Dawe, G., Bulavin, D.V., et al. (2012). Wip1 phosphatasepositively modulates dendritic spine morphology and memory processes through the p38 MAPK signaling pathway. Cell Adh. Migr. 6, 333–343.10.4161/cam.20892Search in Google Scholar PubMed PubMed Central

Ferrer, I., Cruz-Sanchez, F., Guionnet, N., and Tunon, T. (1990). A study of senile plaques with a combined method in brains of patients suffering from Alzheimer’s disease. Arch. Neurobiol. (Madr) 53, 222–226.Search in Google Scholar PubMed

Fulga, T.A., Elson-Schwab, I., Khurana, V., Steinhilb, M.L., Spires, T.L., Hyman, B.T., and Feany, M.B. (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat. Cell Biol. 9, 139–148.10.1038/ncb1528Search in Google Scholar PubMed

Gabr, A.A., Lee, H.J., Onphachanh, X., Jung, Y.H., Kim, J.S., Chae, C.W., and Han, H.J. (2017). Ethanol-induced PGE2 up-regulates Aβ production through PKA/CREB signaling pathway. Biochim. Biophys. Acta 1863, 2942–2953.10.1016/j.bbadis.2017.06.020Search in Google Scholar PubMed

Genheden, M., Kenney, J.W., Johnston, H.E., Manousopoulou, A., Garbis, S.D., and Proud, C.G. (2015). BDNF stimulation of protein synthesis in cortical neurons requires the MAP kinase-interacting kinase MNK1. J. Neurosci. 35, 972–984.10.1523/JNEUROSCI.2641-14.2015Search in Google Scholar PubMed PubMed Central

Ghasemi, R., Zarifkar, A., Rastegar, K., maghsoudi, N., and Moosavi, M. (2014). Insulin protects against Abeta-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption. Neuropharmacology 85, 113–120.10.1016/j.neuropharm.2014.01.036Search in Google Scholar PubMed

Ghidoni, R., Benussi, L., Glionna, M., Franzoni, M., Geroldi, D., Emanuele, E., and Binetti, G. (2008). Decreased plasma levels of soluble receptor for advanced glycation end products in mild cognitive impairment. J. Neural. Transm. (Vienna) 115, 1047–1050.10.1007/s00702-008-0069-9Search in Google Scholar PubMed

Giraldo, E., Lloret, A., Fuchsberger, T., and Vina, J. (2014). Aβ and tautoxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol. 2, 873–877.10.1016/j.redox.2014.03.002Search in Google Scholar PubMed

Haghshomar, M., Rahmani, F., Hadi Aarabi, M., Shahjouei, S., Sobhani, S., and Rahmani, M. (2017). White matter changes correlates of peripheral neuroinflammation in patients with Parkinson’s disease. Neuroscience. pii: S0306-4522(17)30789-3.10.1016/j.neuroscience.2017.10.050Search in Google Scholar PubMed

Han, J., Lee, J.D., Bibbs, L., and Ulevitch, R.J. (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.10.1126/science.7914033Search in Google Scholar PubMed

Han, J., Jiang, Y., Li, Z., Kravchenko, V.V., and Ulevitch, R.J. (1997). Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299.10.1038/386296a0Search in Google Scholar PubMed

Hardy, J.A. and Higgins, G.A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185.10.1126/science.1566067Search in Google Scholar PubMed

Hensley, K., Floyd, R.A., Zheng, N.Y., Nael, R., Robinson, K.A., Nguyen, X., Pye, Q.N., Stewart, C.A., Geddes, J., Markesbery, W.R., et al. (1999). p38 kinase is activated in the Alzheimer’s disease brain. J. Neurochem. 72, 2053–2058.10.1046/j.1471-4159.1999.0722053.xSearch in Google Scholar PubMed

Herlaar, E. and Brown, Z. (1999). p38 MAPK signalling cascades in inflammatory disease. Mol. Med. Today, 5, 439–447.10.1016/S1357-4310(99)01544-0Search in Google Scholar

Ho, D.T., Shayan, H., and Murphy, T.H. (1997). Okadaic acid induces hyperphosphorylation of tau independently of mitogen-activated protein kinase activation. J. Neurochem. 68, 106–111.10.1046/j.1471-4159.1997.68010106.xSearch in Google Scholar PubMed

Hotulainen, P. and Hoogenraad, C.C. (2010). Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619–629.10.1083/jcb.201003008Search in Google Scholar PubMed PubMed Central

Hu, W., Wang, G., Li, P., Wang, Y., Si, C.L., He, J., Long, W., Bai, Y., Feng, Z., and Wang, X. (2014). Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-κB activation. Chem. Biol. Interact. 224, 108–116.10.1016/j.cbi.2014.10.011Search in Google Scholar PubMed

Huai, Y., Dong, Y., Xu, J., Meng, N., Song, C., Li, W., and Lv, P. (2013). L-3-n-butylphthalide protects against vascular dementia via activation of the Akt kinase pathway. Neural Regen. Res. 8, 1733–1742.Search in Google Scholar PubMed

Hyun, S., Kim, M.S., Song, Y.S., Bak, Y., Ham, S.Y., Lee, D.H., Hong, J., and Yoon, D.Y. (2015). Peroxisome proliferator-activated receptor-gamma agonist 4-O-methylhonokiol induces apoptosis by triggering the intrinsic apoptosis pathway and inhibiting the PI3K/Akt survival pathway in SiHa human cervical cancer cells. J. Microbiol. Biotechnol. 25, 334–342.10.4014/jmb.1411.11073Search in Google Scholar PubMed

Imbimbo, B.P., Lombard, J., and Pomara, N. (2005). Pathophysiology of Alzheimer’s disease. Neuroimaging Clin. N. Am. 15, 727–753, ix.10.1016/j.nic.2005.09.009Search in Google Scholar PubMed

Jeong, K., Oh, Y., Kim, S.J., Kim, H., Park, K.C., Kim, S.S., Ha, J., Kang, I., and Choe, W. (2014). Apelin is transcriptionally regulated by ER stress-induced ATF4 expression via a p38 MAPK-dependent pathway. Apoptosis 19, 1399–1410.10.1007/s10495-014-1013-0Search in Google Scholar PubMed

Jiang, Y., Gram, H., Zhao, M., New, L., Gu, J., Feng, L., Di Padova, F., Ulevitch, R.J., and Han, J. (1997). Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J. Biol. Chem. 272, 30122–30128.10.1074/jbc.272.48.30122Search in Google Scholar PubMed

Jung, Y.Y., Lee, Y.J., Choi, D.Y., and Hong, J.T. (2014). Amelioration of cognitive dysfunction in APP/PS1 double transgenic mice by long-term treatment of 4-O-methylhonokiol. Biomol. Ther. (Seoul) 22, 232–238.10.4062/biomolther.2014.030Search in Google Scholar PubMed PubMed Central

Kano, Y., Nohno, T., Shimada, K., Nakagiri, S., Hiragami, F., Kawamura, K., Motoda, H., Numata, K., Murai, H., Koike, Y., et al. (2007). Osmotic shock-induced neurite extension via activation of p38 mitogen-activated protein kinase and CREB. Brain Res. 1154, 1–7.10.1016/j.brainres.2007.03.087Search in Google Scholar PubMed

Kanungo, J. (2017). DNA-PK and P38 MAPK: a kinase collusion in Alzheimer’s disease? Brain Disord. Ther. 6, 232.Search in Google Scholar

Karelina, K., Hansen, K.F., Choi, Y.S., DeVries, A.C., Arthur, J.S., and Obrietan, K. (2012). MSK1 regulates environmental enrichment-induced hippocampal plasticity and cognitive enhancement. Learn Mem. 19, 550–560.10.1101/lm.025775.112Search in Google Scholar PubMed PubMed Central

Keil, E., Höcker, R., Schuster, M., Essmann, F., Ueffing, N., Hoffman, B., Liebermann, D.A., Pfeffer, K., Schulze-Osthoff, K., and Schmitz, I. (2013). Phosphorylation of Atg5 by the Gadd45β–MEKK4-p38 pathway inhibits autophagy. Cell Death Differ. 20, 321–332.10.1038/cdd.2012.129Search in Google Scholar PubMed PubMed Central

Kennedy, D.O., Wightman, E.L., Forster, J., Khan, J., Haskell-Ramsay, C.F., and Jackson, P.A. (2017). Cognitive and mood effects of a nutrient enriched breakfast bar in healthy adults: a randomised, double-blind, placebo-controlled, parallel groups study. Nutrients 9, 1332.10.3390/nu9121332Search in Google Scholar PubMed PubMed Central

Kim, E.K. and Choi, E.-J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta Mol. Basis. Dis. 1802, 396–405.10.1016/j.bbadis.2009.12.009Search in Google Scholar PubMed

Kim, T.I., Lee, Y.K., Park, S.G., Choi, I.S., Ban, J.O., Park, H.K., Nam, S.Y., Yun, Y.W., Han, S.B., Oh, K.W., et al. (2009). L-theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways. Free Radic. Biol. Med. 47, 1601–1610.10.1016/j.freeradbiomed.2009.09.008Search in Google Scholar PubMed

Kim, Y.H., Koh, H.K., and Kim, D.S. (2010). Down-regulation of IL-6 production by astaxanthin via ERK-, MSK-, and NF-kappaB-mediated signals in activated microglia. Int. Immunopharmacol. 10, 1560–1572.10.1016/j.intimp.2010.09.007Search in Google Scholar PubMed

Kim, E.J., Jung, I.H., Van Le, T.K., Jeong, J.J, Kim, N. J., and Kim, D.H. (2013). Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J. Ethnopharmacol. 146, 294–299.10.1016/j.jep.2012.12.047Search in Google Scholar PubMed

Kim, H.S., Ryu, H.S., Kim, J.S., Kim, Y.G., Lee, H.K., Jung, J.K., Kwak, Y.S., Lee, K., Seo, S.Y., Yun, J., et al. (2015). Validation of cyclooxygenase-2 as a direct anti-inflammatory target of 4-O-methylhonokiol in zymosan-induced animal models. Arch. Pharm. Res. 38, 813–825.10.1007/s12272-014-0456-8Search in Google Scholar PubMed

Knight, Z.A. (2010). Small molecule inhibitors of the PI3-kinase family. Curr. Top. Microbiol. Immunol. 347, 263–278.10.1007/82_2010_44Search in Google Scholar PubMed

Knobloch, M. and Mansuy, I.M. (2008). Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Mol. Neurobiol. 37, 73–82.10.1007/s12035-008-8018-zSearch in Google Scholar PubMed

Kuang, X., Du, J.R., Liu, Y.X., Zhang, G.Y., and Peng, H.Y. (2008). Postischemic administration of Z-ligustilide ameliorates cognitive dysfunction and brain damage induced by permanent forebrain ischemia in rats. Pharmacol. Biochem. Behav. 88, 213–221.10.1016/j.pbb.2007.08.006Search in Google Scholar PubMed

Kumar, S., Jiang, M.S., Adams, J.L., and Lee, J.C. (1999). Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase. Biochem. Biophys. Res. Commun. 263, 825–831.10.1006/bbrc.1999.1454Search in Google Scholar PubMed

Kumar, S., Boehm, J., and Lee, J.C. (2003). p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717–726.10.1038/nrd1177Search in Google Scholar PubMed

Kurz, A. and Perneczky, R. (2011). Novel insights for the treatment of Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 373–379.10.1016/j.pnpbp.2010.07.018Search in Google Scholar PubMed

Lan, X., Wang, W., Li, Q., and Wang, J. (2016). The natural flavonoid pinocembrin: molecular targets and potential therapeutic applications. Mol. Neurobiol. 53, 1794–1801.10.1007/s12035-015-9125-2Search in Google Scholar PubMed PubMed Central

Lan, X., Han, X., Li, Q., Li, Q., Gao, Y., Cheng, T., Wan, J., Zhu, W., and Wang, J. (2017). Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav. Immun. 61, 326–339.10.1016/j.bbi.2016.12.012Search in Google Scholar PubMed PubMed Central

Lauretti, E. and Pratico, D. (2015). Glucose deprivation increases tau phosphorylation via P38 mitogen-activated protein kinase. Aging Cell 14, 1067–1074.10.1111/acel.12381Search in Google Scholar PubMed PubMed Central

Lee, V.M.-Y., Balin, B.J., Otvos Jr, L., and Trojanowski, J.Q. (1991). A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251, 675–678.10.1126/science.1899488Search in Google Scholar PubMed

Lee, J.C., Laydon, J.T., McDonnell, P.C., Gallagher, T.F., Kumar, S., Green, D., McNulty, D., Blumenthal, M.J., Heys, J.R., Landvatter, S.W., et al. (1994). A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746.10.1038/372739a0Search in Google Scholar PubMed

Lee, Y.K., Choi, I.S., Ban, J.O., Lee, H.J., Lee, U.S., Han, S.B., Jung, J.K., Kim, Y.H., Kim, K.H., Oh, K.W., et al. (2011a). 4-O-methylhonokiol attenuated beta-amyloid-induced memory impairment through reduction of oxidative damages via inactivation of p38 MAP kinase. J. Nutr. Biochem. 22, 476–486.10.1016/j.jnutbio.2010.04.002Search in Google Scholar PubMed

Lee, Y.J., Choi, I.S., Park, M.H., Lee, Y.M., Song, J.K., Kim, Y.H., Kim, K.H., Hwang, D.Y., Jeong, J.H., Yun, Y.P., et al. (2011b). 4-O-methylhonokiol attenuates memory impairment in presenilin 2 mutant mice through reduction of oxidative damage and inactivation of astrocytes and the ERK pathway. Free Radic. Biol. Med. 50, 66–77.10.1016/j.freeradbiomed.2010.10.698Search in Google Scholar PubMed

Lee, Y.J., Choi, D.Y., Lee, Y.K., Lee, Y.M., Han, S.B., Kim, Y.H., Kim, K.H., Nam, S.Y., Lee, B.J., Kang, J.K., et al. (2012). 4-O-methylhonokiol prevents memory impairment in the Tg2576 transgenic mice model of Alzheimer’s disease via regulation of beta-secretase activity. J. Alzheimers Dis. 29, 677–690.10.3233/JAD-2012-111835Search in Google Scholar PubMed

Lei, H., Zhao, C.-Y., Liu, D.-M., Zhang, Y., Li, L., Wang, X.-L., and Peng, Y. (2014). L-3-n-butylphthalide attenuates β-amyloid-induced toxicity in neuroblastoma SH-SY5Y cells through regulating mitochondrion-mediated apoptosis and MAPK signaling. J. Asian Nat. Prod. Res. 16, 854–864.10.1080/10286020.2014.939586Search in Google Scholar PubMed

Leung, K.W. and Wong, A.S.T. (2010). Pharmacology of ginsenosides: a literature review. Chin. Med. 5, 20.10.1186/1749-8546-5-20Search in Google Scholar PubMed PubMed Central

Li, Y., Liu, L., Barger, S.W., and Griffin, W.S. (2003). Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 23, 1605–1611.10.1523/JNEUROSCI.23-05-01605.2003Search in Google Scholar PubMed

Li, X., An, W.L., Alafuzoff, I., Soininen, H., Winblad, B., and Pei, J.J. (2004). Phosphorylated eukaryotic translation factor 4E is elevated in Alzheimer brain. Neuroreport 15, 2237–2240.10.1097/00001756-200410050-00019Search in Google Scholar PubMed

Li, W., Chu, Y., Zhang, L., Yin, L., and Li, L. (2012). Ginsenoside Rg1 attenuates tau phosphorylation in SK-N-SH induced by Aβ-stimulated THP-1 supernatant and the involvement of p38 pathway activation. Life Sci. 91, 809–815.10.1016/j.lfs.2012.08.028Search in Google Scholar PubMed

Li, X., Song, D., and Leng, S.X. (2015). Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin. Interv. Aging 10, 549–560.10.2147/CIA.S74042Search in Google Scholar PubMed PubMed Central

Liao, Y.F., Wang, B.J., Cheng, H.T., Kuo, L.H., and Wolfe, M.S. (2004). Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate γ-secretase-mediated cleavage of amyloid precursor protein througha JNK-dependent MAPK pathway. J. Biol. Chem. 279, 49523–49532.10.1074/jbc.M402034200Search in Google Scholar PubMed

Lim, D.Y., Lee, M.H., Shin, S.H., Chen, H., Ryu, J., Shan, L., Li, H., Bode, A.M., Zhang, W.D., and Dong, Z. (2014). (+)-2-(1-Hydroxyl-4-oxocyclohexyl) ethyl caffeate suppresses solar UV-induced skin carcinogenesis by targeting PI3K, ERK1/2, and p38. Cancer Prev. Res. (Phila) 7, 856–865.10.1158/1940-6207.CAPR-13-0286Search in Google Scholar PubMed PubMed Central

Liu, R., Wu, C.X., Zhou, D., Yang, F., Tian, S., Zhang, L., Zhang, T.T., and Du, G.H. (2012). Pinocembrin protects against beta-amyloid-inducedtoxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Med. 10, 105.10.1186/1741-7015-10-105Search in Google Scholar PubMed PubMed Central

Liu, R.X., Huang, C., Bennett, D. A., Li, H., and Wang, R. (2016). The characteristics of astrocyte on Abeta clearance altered in Alzheimer’s disease were reversed by anti-inflammatory agent (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate. Am. J. Transl. Res. 8, 4082–4094.Search in Google Scholar PubMed

Lue, L.F., Walker, D.G., Brachova, L., Beach, T.G., Rogers, J., Schmidt, A.M., Stern, D.M., and Yan, S.D. (2001). Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp. Neurol. 171, 29–45.10.1006/exnr.2001.7732Search in Google Scholar PubMed

Ma, L., Carter, R.J., Morton, A.J., and Nicholson, L.F. (2003). RAGE is expressed in pyramidal cells of the hippocampus following moderate hypoxic-ischemic brain injury in rats. Brain Res. 966, 167–174.10.1016/S0006-8993(02)04149-5Search in Google Scholar PubMed

Macauley, S.L., Wong, A.M., Shyng, C., Augner, D.P., Dearborn, J.T., Pearse, Y., Roberts, M.S., Fowler, S.C., Cooper, J.D., Watterson, D.M., et al. (2014). An anti-neuroinflammatory that targets dysregulated glia enhances the efficacy of CNS-directed gene therapy in murine infantile neuronal ceroid lipofuscinosis. J. Neurosci. 34, 13077–13082.10.1523/JNEUROSCI.2518-14.2014Search in Google Scholar PubMed PubMed Central

Maphis, N., Jiang, S., Xu, G., Kokiko-Cochran, O.N., Roy, S.M., Van Eldik, L.J., Watterson, D.M., Lamb, B.T., and Bhaskar, K. (2016). Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology. Alzheimer’s Res. Ther. 8, 54.10.1186/s13195-016-0221-ySearch in Google Scholar PubMed PubMed Central

Matos, M., Augusto, E., Oliveira, C., and Agostinho, P. (2008). Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 156, 898–910.10.1016/j.neuroscience.2008.08.022Search in Google Scholar PubMed

Mattson, M.P. (1997). Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.10.1152/physrev.1997.77.4.1081Search in Google Scholar PubMed

Moriguchi, T., Toyoshima, F., Masuyama, N., Hanafusa, H., Gotoh, Y., and Nishida, E. (1997). A novel SAPK/JNK kinase, MKK7, stimulated by TNFα and cellular stresses. EMBO J. 16, 7045–7053.10.1093/emboj/16.23.7045Search in Google Scholar PubMed PubMed Central

Mufson, E.J., Binder, L., Counts, S.E., DeKosky, S.T., deTolledo-Morrell, L., Ginsberg, S.D., Ikonomovic, M.D., Perez, S.E., and Scheff, S.W. (2012). Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol. 123, 13–30.10.1007/s00401-011-0884-1Search in Google Scholar PubMed PubMed Central

Munoz, L. and Ammit, A.J. (2010). Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology 58, 561–568.10.1016/j.neuropharm.2009.11.010Search in Google Scholar PubMed

Munoz, L., Ranaivo, H.R., Roy, S.M., Hu, W., Craft, J.M., McNamara, L.K., Chico, L.W., Van Eldik, L.J., and Watterson, D.M. (2007). A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer’s disease mouse model. J. Neuroinflammation 4, 21.10.1186/1742-2094-4-21Search in Google Scholar PubMed PubMed Central

Nai, Y., Liu, H., Bi, X., Gao, H., and Ren, C. (2017). Protective effect of astaxanthin on acute cerebral infarction in rats. Hum. Exp. Toxicol. doi: 10.1177/0960327117745693.10.1177/0960327117745693Search in Google Scholar PubMed

Nakamura, Y., Wood, C. L., Patton, A.P., Jaafari, N., Henley, J.M., Mellor, J.R., and Hanley, J.G. (2011). PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity. EMBO J. 30, 719–730.10.1038/emboj.2010.357Search in Google Scholar PubMed PubMed Central

Ning, B., Li, Z., Zhu, N., Hou, G., and Pang, Q. (2013). Traumatic brain injury induces a downregulation of MSK1 in rat brain cortex. J. Mol. Neurosci. 49, 380–386.10.1007/s12031-012-9893-3Search in Google Scholar PubMed

Nobre, A.C., Rao, A., and Owen, G.N. (2008). L-theanine, a natural constituent in tea, and its effect on mental state. Asia Pac. J. Clin. Nutr. 17(Suppl 1), 167–168.Search in Google Scholar PubMed

Ojala, J.O. and Sutinen, E.M. (2017). The role of interleukin-18, oxidative stress and metabolic syndrome in Alzheimer’s disease. J. Clin. Med. 6, E55.10.3390/jcm6050055Search in Google Scholar PubMed PubMed Central

Ojala, J.O., Sutinen, E.M., Salminen, A., and Pirttila, T. (2008). Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells. J. Neuroimmunol. 205, 86–93.10.1016/j.jneuroim.2008.09.012Search in Google Scholar PubMed

Omata, Y., Lim, Y.M., Akao, Y., and Tsuda, L. (2014). Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer’s disease. Am. J. Neurodegener. Dis. 3, 134–142.Search in Google Scholar PubMed

Onyango, I.G., Tuttle, J.B., and Bennett, J.P., Jr. (2005). Altered intracellular signaling and reduced viability of Alzheimer’s disease neuronal cybrids is reproduced by β-amyloid peptide acting through receptor for advanced glycation end products (RAGE). Mol. Cell Neurosci. 29, 333–343.10.1016/j.mcn.2005.02.012Search in Google Scholar PubMed

Ossoukhova, A., Owen, L., Savage, K., Meyer, M., Ibarra, A., Roller, M., Pipingas, A., Wesnes, K., and Scholey, A. (2015). Improved working memory performance following administration of a single dose of American ginseng (Panax quinquefolius L.) to healthy middle-age adults. Hum. Psychopharmacol. 30, 108–122.10.1002/hup.2463Search in Google Scholar PubMed

Pan, Y.X., Chen, K.F., Lin, Y.X., Wu, W., Zhou, X.M., Zhang, X.S., Zhang, X., and Shi, J.X. (2013). Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-α. J. Clin. Neurosci. 20, 726–730.10.1016/j.jocn.2012.09.012Search in Google Scholar PubMed

Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.-e., Karandikar, M., Berman, K., Berman, K., and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions 1. Endocr. Rev. 22, 153–183.10.1210/edrv.22.2.0428Search in Google Scholar PubMed

Peebles, C.L., Yoo, J., Thwin, M.T., Palop, J.J., Noebels, J.L., and Finkbeiner, S. (2010). Arc regulates spine morphology and maintains network stability in vivo. Proc. Natl. Acad. Sci. USA 107, 18173–18178.10.1073/pnas.1006546107Search in Google Scholar PubMed PubMed Central

Pei, J.J., Braak, E., Braak, H., Grundke-Iqbal, I., Iqbal, K., Winblad, B., and Cowburn, R.F. (2001). Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer’s disease brains at different stages of neurofibrillary degeneration. J. Alzheimers Dis. 3, 41–48.10.3233/JAD-2001-3107Search in Google Scholar PubMed

Peng, Y., Sun, J., Hon, S., Nylander, A.N., Xia, W., Feng, Y., Wang, X., and Lemere, C.A. (2010). L-3-n-butylphthalide improves cognitive impairment and reduces amyloid-beta in a transgenic model of Alzheimer’s disease. J. Neurosci. 30, 8180–8189.10.1523/JNEUROSCI.0340-10.2010Search in Google Scholar PubMed PubMed Central

Peng, Y., Hu, Y., Xu, S., Li, P., Li, J., Lu, L., Yang, H., Feng, N., Wang, L., and Wang, X. (2012). L-3-n-butylphthalide reduces tau phosphorylation and improves cognitive deficits in AβPP/PS1-Alzheimer’s transgenic mice. J. Alzheimers Dis. 29, 379–391.10.3233/JAD-2011-111577Search in Google Scholar PubMed

Penzes, P. and VanLeeuwen, J.-E. (2011). Impaired regulation of synaptic actin cytoskeleton in Alzheimer’s disease. Brain Res. Rev. 67, 184–192.10.1016/j.brainresrev.2011.01.003Search in Google Scholar PubMed PubMed Central

Phiel, C.J., Wilson, C.A., Lee, V.M., and Klein, P.S. (2003). GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423, 435–439.10.1038/nature01640Search in Google Scholar PubMed

Polotow, T.G., Poppe, S.C., Vardaris, C.V., Ganini, D., Guariroba, M., Mattei, R., Hatanaka, E., Martins, M.F., Bondan, E.F., and Barros, M.P. (2015). Redox status and neuro inflammation indexes in cerebellum and motor cortex of Wistar rats supplemented with natural sources of omega-3 fatty acids and astaxanthin: fish oil, krill oil, and algal biomass. Mar. Drugs 13, 6117–6137.10.3390/md13106117Search in Google Scholar PubMed PubMed Central

Puangmalai, N., Thangnipon, W., Soi-Ampornkul, R., Suwanna, N., Tuchinda, P., and Nobsathian, S. (2017). Neuroprotection of N-benzylcinnamide on scopolamine-induced cholinergic dysfunction in human SH-SY5Y neuroblastoma cells. Neural. Regen. Res. 12, 1492–1498.10.4103/1673-5374.215262Search in Google Scholar PubMed PubMed Central

Qi, Q., Xu, J., Lv, P., Dong, Y., Liu, Z., Hu, M., Xiao, Y., Jia, Y., Jin, W., Fan, M., et al. (2017). DL-3-n-butylphthalide alleviates vascular cognitive impairment induced by chronic cerebral hypoperfusion by activating the Akt/Nrf2 signaling pathway in the hippocampus of rats. Neurosci. Lett. 672, 59–64.10.1016/j.neulet.2017.11.051Search in Google Scholar PubMed

Raingeaud, J., Whitmarsh, A.J., Barrett, T., Derijard, B., and Davis, R.J. (1996). MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell Biol. 16, 1247–1255.10.1128/MCB.16.3.1247Search in Google Scholar PubMed PubMed Central

Rehman, S.U., Ahmad, A., Yoon, G.H., Khan, M., Abid, M.N., and Kim, M.O. (2017). Inhibition of c-Jun N-terminal kinase protects against brain damage and improves learning and memory after traumatic brain injury in adult mice. Cereb. Cortex 1–19. [Epub ahead of print].10.1093/cercor/bhx164Search in Google Scholar PubMed

Reinikainen, K.J., Soininen, H., and Riekkinen, P.J. (1990). Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics and therapy. J. Neurosci. Res. 27, 576–586.10.1002/jnr.490270419Search in Google Scholar PubMed

Rich, J.B., Rasmusson, D.X., Folstein, M.F., Carson, K.A., Kawas, C., and Brandt, J. (1995). Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology 45, 51–55.10.1212/WNL.45.1.51Search in Google Scholar PubMed

Rivera-Cervantes, M.C., Castaneda-Arellano, R., Castro-Torres, R.D., Gudino-Cabrera, G., Feria y Velasco, A.I., Camins, A., Beas-Zárate C. (2015). P38 MAPK inhibition protects againstglutamate neurotoxicity and modifies NMDA and AMPA receptor subunit expression. J. Mol. Neurosci. 55, 596–608.10.1007/s12031-014-0398-0Search in Google Scholar PubMed

Robinson, K.A., Stewart, C.A., Pye, Q.N., Nguyen, X., Kenney, L., Salzman, S., Floyd, R.A., and Hensley, K. (1999). Redox-sensitiveprotein phosphatase activity regulates the phosphorylation state of p38 protein kinase in primary astrocyte culture. J. Neurosci. Res. 55, 724–732.10.1002/(SICI)1097-4547(19990315)55:6<724::AID-JNR7>3.0.CO;2-9Search in Google Scholar PubMed

Rocca, D.L., Martin, S., Jenkins, E.L., and Hanley, J.G. (2008). Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat. Cell Biol. 10, 259–271.10.1038/ncb1688Search in Google Scholar PubMed

Sabogal-Guaqueta, A.M., Osorio, E., and Cardona-Gomez, G.P. (2016). Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer’s mice. Neuropharmacology 102, 111–120.10.1016/j.neuropharm.2015.11.002Search in Google Scholar PubMed

Sanjari Moghaddam, H., Zare-Shahabadi, A., Rahmani, F., and Rezaei, N. (2017). Neurotransmission systems in Parkinson’s disease. Rev. Neurosci. 28, 509–536.10.1515/revneuro-2016-0068Search in Google Scholar PubMed

Sano, M., Ernesto, C., Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C.W., Pfeiffer, E., et al. (1997). A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med. 336, 1216–1222.10.1056/NEJM199704243361704Search in Google Scholar

Sasaki, N., Takeuchi, M., Chowei, H., Kikuchi, S., Hayashi, Y., Nakano, N., Ikeda H., Yamagishi S., Kitamoto, T., Saito, T., et al. (2002). Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt-Jakob disease with prion plaques. Neurosci. Lett. 326, 117–120.10.1016/S0304-3940(02)00310-5Search in Google Scholar PubMed

Scheff, S.W., Sparks, D.L., and Price, D.A. (1996). Quantitative assessment of synaptic density in the outer molecular layer of the hippocampal dentate gyrus in Alzheimer’s disease. Dementia 7, 226–232.10.1159/000106884Search in Google Scholar PubMed

Schnoder, L., Hao, W., Qin, Y., Liu, S., Tomic, I., Liu, X., Fassbender, K., and Liu, Y. (2016). Deficiency of neuronal p38alpha MAPK attenuates amyloid pathology in Alzheimer disease mouse and cell models through facilitating lysosomal degradation of BACE1. J. Biol. Chem. 291, 2067–2079.10.1074/jbc.M115.695916Search in Google Scholar PubMed

Scholey, A., Ossoukhova, A., Owen, L., Ibarra, A., Pipingas, A., He, K., He, K., Roller, M., and Stough, C. (2010). Effects of American ginseng (Panax quinquefolius) on neurocognitive function: an acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology (Berl) 212, 345–356.10.1007/s00213-010-1964-ySearch in Google Scholar PubMed

Schuehly, W., Paredes, J.M., Kleyer, J., Huefner, A., Anavi-Goffer, S., Raduner, S., Altmann, K.H., and Gertsch, J. (2011). Mechanisms of osteoclastogenesis inhibition by a novel class of biphenyl-type cannabinoid CB(2) receptor inverse agonists. Chem. Biol. 18, 1053–1064.10.1016/j.chembiol.2011.05.012Search in Google Scholar PubMed

Selkoe, D.J. (2002). Alzheimer’s disease is a synaptic failure. Science 298, 789–791.10.1126/science.1074069Search in Google Scholar PubMed

Shen, J.N., Xu, L.X., Shan, L., Zhang, W.D., Li, H.L., and Wang, R. (2015). Neuroprotection of (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate against hydrogen peroxide and lipopolysaccharide induced injury via modulating arachidonic acid network and p38-MAPK signaling. Curr. Alzheimer Res. 12, 892–902.10.2174/156720501209151019111244Search in Google Scholar PubMed

Shioda, N., Han, F., and Fukunaga, K. (2009). Role of Akt and ERK signaling in the neurogenesis following brain ischemia. Int. Rev. Neurobiol. 85, 375–387.10.1016/S0074-7742(09)85026-5Search in Google Scholar PubMed

Singh, S., Powell, D.W., Rane, M.J., Millard, T.H., Trent, J.O., Pierce, W.M., Klein, J.B., Machesky, L.M., and McLeish, K.R. (2003). Identification of the p16-Arc subunit of the Arp 2/3 complex as a substrate of MAPK-activated protein kinase 2 by proteomic analysis. J. Biol. Chem. 278, 36410–36417.10.1074/jbc.M306428200Search in Google Scholar PubMed

Soane, L., Kahraman, S., Kristian, T., and Fiskum, G. (2007). Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J. Neurosci. Res. 85, 3407–3415.10.1002/jnr.21498Search in Google Scholar PubMed PubMed Central

Song, Y.S., Park, H.J., Kim, S.Y., Lee, S.H., Yoo, H.S., Lee, H.S., Lee, M.K., Oh, K.W., Kang, S.K., Lee, S.E., et al. (2004). Protective role of Bcl-2 on β-amyloid-induced cell death of differentiated PC12 cells: reduction of NF-κB and p38 MAP kinase activation. Neurosci. Res. 49, 69–80.10.1016/j.neures.2004.01.010Search in Google Scholar PubMed

Spires-Jones, T.L., de Calignon, A., Matsui, T., Zehr, C., Pitstick, R., Wu, H.Y., Osetek, J.D., Jones, P.B., Bacskai, B.J., Feany, M.B., et al. (2008). In vivo imaging reveals dissociation between caspase activation and acute neuronal death in tangle-bearing neurons. J. Neurosci. 28, 862–867.10.1523/JNEUROSCI.3072-08.2008Search in Google Scholar PubMed PubMed Central

Stein, I.S., Gray, J.A., and Zito, K. (2015). Non-ionotropic NMDA receptor signaling drives activity-induced dendritic spine shrinkage. J. Neurosci. 35, 12303–12308.10.1523/JNEUROSCI.4289-14.2015Search in Google Scholar PubMed PubMed Central

Streit, W.J. (2004). Microglia and Alzheimer’s disease pathogenesis. J. Neurosci. Res. 77, 1–8.10.1002/jnr.20093Search in Google Scholar PubMed

Sun, A., Liu, M., Nguyen, X.V., and Bing, G. (2003). P38 MAP kinase is activated at early stages in Alzheimer’s disease brain. Exp. Neurol. 183, 394–405.10.1016/S0014-4886(03)00180-8Search in Google Scholar PubMed

Sutinen, E.M., Pirttila, T., Anderson, G., Salminen, A., and Ojala, J.O. (2012). Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J. Neuroinflammation 9, 199.10.1186/1742-2094-9-199Search in Google Scholar PubMed PubMed Central

Tan, M., Wang, S., Song, J., and Jia, J. (2012). Combination of p53(ser15) and p21/p21(thr145) in peripheral blood lymphocytes as potential Alzheimer’s disease biomarkers. Neurosci. Lett. 516, 226–231.10.1016/j.neulet.2012.03.093Search in Google Scholar PubMed

Tang, S.C., Yang, K.C., Hu, C.J., Chiou, H.Y., Wu, C.C., and Jeng, J.S. (2017). Elevated plasma level of soluble form of RAGE in ischemic stroke patients with dementia. Neuromolecular Med. 19, 579–583.10.1007/s12017-017-8471-9Search in Google Scholar PubMed PubMed Central

Thangnipon, W., Puangmalai, N., Chinchalongporn, V., Jantrachotechatchawan, C., Kitiyanant, N., Soi-Ampornkul, R., Tuchinda, P., and Nobsathian, S. (2013). N-benzylcinnamide protects rat cultured cortical neurons from β-amyloid peptide-induced neurotoxicity. Neurosci. Lett. 556, 20–25.10.1016/j.neulet.2013.09.071Search in Google Scholar PubMed

Thangnipon, W., Suwanna, N., Jantrachotechatchawan, C., Ngampramuan, S., Tuchinda, P., and Nobsathian, S. (2015). Protective roles of N-benzylcinnamide on cortex and hippocampus of aged rat brains. Arch. Pharm. Res. 38, 1380–1388.10.1007/s12272-015-0593-8Search in Google Scholar PubMed

Thangnipon, W., Puangmalai, N., Suwanna, N., Soi-Ampornkul, R., Phonchai, R., Kotchabhakdi, N., Mukda, S., Phermthai, T., Julavijitphong, S., Tuchinda, P., et al. (2016). Potential role of N-benzylcinnamide in inducing neuronal differentiation from human amniotic fluid mesenchymal stem cells. Neurosci. Lett. 610, 6–12.10.1016/j.neulet.2015.10.050Search in Google Scholar PubMed

Torres, M., Marcilla-Etxenike, A., Fiol-deRoque, M.A., Escriba, P.V., and Busquets, X. (2015). The unfolded protein response in the therapeutic effect of hydroxy-DHA against Alzheimer’s disease. Apoptosis 20, 712–724.10.1007/s10495-015-1099-zSearch in Google Scholar PubMed

Vanhaesebroeck, B., Leevers, S.J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P.C., Woscholski, R., Parker, P.J., and Waterfield, M.D. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602.10.1146/annurev.biochem.70.1.535Search in Google Scholar PubMed

Vignini, A., Giulietti, A., Nanetti, L., Raffaelli, F., Giusti, L., Mazzanti, L., and Provinciali, L. (2013). Alzheimer’s disease and diabetes: new insights and unifying therapies. Curr. Diabetes Rev. 9, 218–227.10.2174/1573399811309030003Search in Google Scholar PubMed

Wang, X.Z. and Ron, D. (1996). Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science 272, 1347–1349.10.1126/science.272.5266.1347Search in Google Scholar PubMed

Wang, H.-Q., Sun, X.-B., Xu, Y.-X., Zhao, H., Zhu, Q.-Y., and Zhu, C.-Q. (2010). Astaxanthin upregulates heme oxygenase-1 expression through ERK1/2 pathwayand its protective effect against beta-amyloid-induced cytotoxicity in SH-SY5Y cells. Brain Res. 1360, 159–167.10.1016/j.brainres.2010.08.100Search in Google Scholar PubMed

Wang, G., Pan, J., and Chen, S.-D. (2012). Kinases and kinase signaling pathways: potential therapeutic targets in Parkinson’s disease. Progr. Neurobiol. 98, 207–221.10.1016/j.pneurobio.2012.06.003Search in Google Scholar PubMed

Wang, S., Zhang, C., Sheng, X., Zhang, X., Wang, B., and Zhang, G. (2014). Peripheral expression of MAPK pathways in Alzheimer’s and Parkinson’s diseases. J. Clin. Neurosci. 21, 810–814.10.1016/j.jocn.2013.08.017Search in Google Scholar PubMed

Watterson, D.M., Grum-Tokars, V.L., Roy, S.M., Schavocky, J.P., Bradaric, B.D., Bachstetter, A.D., Xing, B., Dimayuga, E., Saeed, F., Zhang, H., et al. (2013). Development of novel in vivo chemical probes to address CNS protein kinase involvement in synaptic dysfunction. PLoS One 8, e66226.10.1371/journal.pone.0066226Search in Google Scholar PubMed PubMed Central

Wei, W., Nguyen, L.N., Kessels, H.W., Hagiwara, H., Sisodia, S., and Malinow, R. (2010). Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat. Neurosci. 13, 190–196.10.1038/nn.2476Search in Google Scholar PubMed PubMed Central

Wenk, G.L. (2003). Neuropathologic changes in Alzheimer’s disease. J. Clin. Psychiatry 64(Suppl 9), 7–10.Search in Google Scholar PubMed

Westermarck, J., Li, S.P., Kallunki, T., Han, J., and Kahari, V.M. (2001). p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Mol. Cell Biol. 21, 2373–2383.10.1128/MCB.21.7.2373-2383.2001Search in Google Scholar PubMed PubMed Central

Wischik, C., Edwards, P., Lai, R., Roth, M., andHarrington, C. (1996). Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. USA 93, 11213–11218.10.1073/pnas.93.20.11213Search in Google Scholar PubMed PubMed Central

Wu, J., Petralia, R.S., Kurushima, H., Patel, H., Jung, M., Volk, L., Chowdhury, S., Shepherd, J.D., Dehoff, M., Li, Y., et al. (2011). Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent β-amyloid generation. Cell 147, 615–628.10.1016/j.cell.2011.09.036Search in Google Scholar PubMed PubMed Central

Wu, Z., Zhu, Y., Cao, X., Sun, S., and Zhao, B. (2014). Mitochondrial toxic effects of Abeta through mitofusins in the early pathogenesis of Alzheimer’s disease. Mol. Neurobiol. 50, 986–996.10.1007/s12035-014-8675-zSearch in Google Scholar PubMed

Xiang, J., Pan, J., Chen, F., Zheng, L., Chen, Y., Zhang, S., and Feng, W. (2014). L-3-n-butylphthalide improves cognitive impairment of APP/PS1 mice by BDNF/TrkB/PI3K/AKT pathway. Int. J. Clin. Exp. Med. 7, 1706–1713.Search in Google Scholar PubMed

Xiong, Z., Lu, W., Zhu, L., Zeng, L., Shi, C., Jing, Z., Xiang, Y., Li, W., Tsang, CK., Ruan, Y., et al. (2017). Dl-3-n-butylphthalide treatment enhances hemodynamics and ameliorates memory deficits in rats with chronic cerebral hypoperfusion. Front Aging Neurosci. 9, 238.10.3389/fnagi.2017.00238Search in Google Scholar PubMed PubMed Central

Xu, J., Wang, Y., Li, N., Xu, L., Yang, H., and Yang, Z. (2012). L-3-n-butylphthalide improves cognitive deficits in rats with chronic cerebral ischemia. Neuropharmacology 62, 2424–2429.10.1016/j.neuropharm.2012.02.014Search in Google Scholar PubMed

Xu, W., Yang, L., and Li, J. (2016). Protection against beta-amyloid-induced neurotoxicity by naturally occurring Z-ligustilide through the concurrent regulation of p38 and PI3-K/Akt pathways. Neurochem. Int. 100, 44–51.10.1016/j.neuint.2016.08.012Search in Google Scholar PubMed

Yamagishi, S., Yamada, M., Koshimizu, H., Takai, S., Hatanaka, H., Takeda, K., Ichijo, H., Shimoke, K., and Ikeuchi, T. (2003). Apoptosis-signal regulating kinase-1 is involved in the low potassium-induced activation of p38 mitogen-activated protein kinase and c-Jun in cultured cerebellar granule neurons. J. Biochem. 133, 719–724.10.1093/jb/mvg092Search in Google Scholar PubMed

Yan, S.D., Yan, S.F., Chen, X., Fu, J., Chen, M., Kuppusamy, P., Smith, M.A., Perry, G., Godman, G.C., Nawroth, P., et al. (1995). Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide. Nat. Med. 1, 693–699.10.1038/nm0795-693Search in Google Scholar PubMed

Yan, S.D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., et al. (1996). RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382, 685–691.10.1038/382685a0Search in Google Scholar PubMed

Yan, S.S., Chen, D., Yan, S., Guo, L., and Chen, J.X. (2012). RAGE is a key cellular target for Aβ-induced perturbation in Alzheimer’s disease. Front. Biosci. (Schol Ed) 4, 240–250.10.2741/s265Search in Google Scholar PubMed

Yan, H., Yan, Z., Niu, X., Wang, J., Gui, Y., and Zhang, P. (2017). Dl-3-n-butylphthalide can improve the cognitive function of patients with acute ischemic stroke: a prospective intervention study. Neurol. Res. 39, 337–343.10.1080/01616412.2016.1268775Search in Google Scholar PubMed

Yang, Z.H., Sun, X., Qi, Y., Mei, C., Sun, X.B., and Du, G.H. (2012). Uptake characteristics of pinocembrin and its effect on p-glycoprotein at the blood-brain barrier in in vitro cell experiments. J. Asian Nat. Prod. Res. 14, 14–21.10.1080/10286020.2011.620393Search in Google Scholar PubMed

Yang, S., Zhou, G., Liu, H., Zhang, B., Li, J., Cui, R., and Du, Y. (2013). Protective effects of p38 MAPK inhibitor SB202190 against hippocampal apoptosis and spatial learning and memory deficits in a rat model of vascular dementia. BioMed Res. Int. 2013, 215798.10.1155/2013/215798Search in Google Scholar PubMed PubMed Central

Yasuda, S., Sugiura, H., Tanaka, H., Takigami, S., and Yamagata, K. (2011). p38 MAP kinase inhibitors as potential therapeutic drugs for neural diseases. Cent. Nerv. Syst. Agents Med. Chem. 11, 45–59.10.2174/187152411794961040Search in Google Scholar PubMed

Young, P.R., McLaughlin, M.M., Kumar, S., Kassis, S., Doyle, M.L., McNulty, D., Gallagher, T.F., Fisher, S., McDonnell, P.C., Carr, S.A., et al. (1997). Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J. Biol. Chem. 272, 12116–12121.10.1074/jbc.272.18.12116Search in Google Scholar PubMed

Yu, Y., Du, J.R., Wang, C.Y., and Qian, Z.M. (2008). Protection against hydrogen peroxide-induced injury by Z-ligustilide in PC12 cells. Exp. Brain Res. 184, 307–312.10.1007/s00221-007-1100-3Search in Google Scholar PubMed

Yuasa, T., Ohno, S., Kehrl, J.H., and Kyriakis, J.M. (1998). Tumor necrosis factor signalingto stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. J. Biol. Chem. 273, 22681–22692.10.1074/jbc.273.35.22681Search in Google Scholar PubMed

Zhang, L., Yu, H., Zhao, X., Lin, X., Tan, C., Cao, G., and Wang, Z. (2010). Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress inSH-SY5Y human neuroblastoma cells. Neurochem. Int. 57, 547–555.10.1016/j.neuint.2010.06.021Search in Google Scholar PubMed

Zhang, H., Liu, Y., Lao, M., Ma, Z., and Yi, X. (2011). Puerarin protects Alzheimer’s disease neuronal cybrids from oxidant-stress induced apoptosis by inhibiting pro-death signaling pathways. Exp. Gerontol. 46, 30–37.10.1016/j.exger.2010.09.013Search in Google Scholar PubMed

Zhang, C., Zhao, S., Zang, Y., Gu, F., Mao, S., Feng, S., Hu, L., and Zhang, C. (2017). The efficacy and safety of Dl-3n-butylphthalide on progressive cerebral infarction: a randomized controlled STROBE study. Medicine (Baltimore) 96, e7257.10.1097/MD.0000000000007257Search in Google Scholar PubMed PubMed Central

Zheng, L., Terman, A., Hallbeck, M., Dehvari, N., Cowburn, R.F., Benedikz, E., Kågedal, K., Cedazo-Minguez, A., and Marcusson, J. (2011). Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells. Autophagy 7, 1528–1545.10.4161/auto.7.12.18051Search in Google Scholar PubMed PubMed Central

Zheng, Q.H., Li, X.L., Mei, Z.G., Xiong, L., Mei, Q.X., Wang, J.F., Tan, L.J., Yang, S.B., and Feng, Z.T. (2017). Efficacy and safety of puerarin injection in curing acute ischemic stroke: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 96, e5803.10.1097/MD.0000000000005803Search in Google Scholar PubMed PubMed Central

Zhou, W. and Hu, W. (2013). Anti-neuroinflammatory agents for the treatment of Alzheimer’s disease. Future Med. Chem. 5, 1559–1571.10.4155/fmc.13.125Search in Google Scholar PubMed

Zhou, Y.X., Zhang, H., and Peng, C. (2014). Puerarin: a review of pharmacological effects. Phytother. Res. 28, 961–975.10.1002/ptr.5083Search in Google Scholar PubMed

Zhu, X., Rottkamp, C.A., Boux, H., Takeda, A., Perry, G., and Smith, M.A. (2000). Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J. Neuropathol. Exp. Neurol. 59, 880–888.10.1093/jnen/59.10.880Search in Google Scholar PubMed

Received: 2018-01-28
Accepted: 2018-03-22
Published Online: 2018-05-28
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2018-0008/html
Scroll to top button