Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 4, 2013

Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss

  • Yuyi You EMAIL logo , Vivek K. Gupta , Jonathan C. Li , Alexander Klistorner and Stuart L. Graham

Abstract

Optic neuropathy refers to dysfunction and/or degeneration of axons of the optic nerve with subsequent optic nerve atrophy. A common feature of different optic neuropathies is retinal ganglion cell (RGC) apoptosis and axonal damage. Glaucoma and optic neuritis are the two major degenerative causes of optic nerve damage. Here, we review the anatomy and pathology of the optic nerve, and etiological categories of optic neuropathies, and discuss rodent models that can mimic these conditions. Electrophysiology can reveal signature features of RGC damage using the pattern electroretinogram (PERG), scotopic threshold response (STR) and photopic negative response (PhNR). The amplitude of the visual evoked potential (VEP) also reflects RGC axonal damage. The neurotrophin-mediated survival pathways, as well as the extrinsic and intrinsic cell apoptotic pathways, play a critical role in the pathogenesis of RGC loss. Finally, promising neuroprotective approaches based on the molecular signaling are analyzed for the treatment of optic neuropathies.


Corresponding author: Yuyi You, Department of Ophthalmology, Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales 2109, Australia

References

Agarwal, N., Agarwal, R., Kumar, D.M., Ondricek, A., Clark, A.F., Wordinger, R.J., and Pang, I.H. (2007). Comparison of expression profile of neurotrophins and their receptors in primary and transformed rat retinal ganglion cells. Mol. Vis. 13, 1311–1318.Search in Google Scholar

Allen, C.M.C., Lueck, C.J., and Dennis, M. (2010). Neurological disease. Davidson’s Principles and Practice of Medicine 21st edn. N.R. Colledge, B.R. Walker, and S.H. Ralston, eds. (Edinburgh: Elsevier), pp. 1131–1235.10.1016/B978-0-7020-3085-7.00026-2Search in Google Scholar

Almasieh, M., Wilson, A.M., Morquette, B., Cueva Vargas, J.L., and Di Polo, A. (2012). The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 31, 152–181.10.1016/j.preteyeres.2011.11.002Search in Google Scholar PubMed

Alward, W.L. (1998). Medical management of glaucoma. N. Engl. J. Med. 339, 1298–1307.10.1056/NEJM199810293391808Search in Google Scholar PubMed

Arieli, A., Sterkin, A., Grinvald, A., and Aertsen A. (1996). Dynamics of ongoing activity: Explanation of the large variability in evoked cortical potentials. Science 273, 1868–1871.10.1126/science.273.5283.1868Search in Google Scholar PubMed

Asgari, N., Owens, T., Frøkiær, J., Stenager, E., Lillevang, S.T., and Kyvik, K.O. (2011). Neuromyelitis optica (NMO) – an autoimmune disease of the central nervous system (CNS). Acta Neurol. Scand. 123, 369–384.10.1111/j.1600-0404.2010.01416.xSearch in Google Scholar PubMed

Atilla, H., Tekeli, O., Örnek, K., Batioglu, F., Halil Elhan, A., and Eryilmaz, T. (2006). Pattern electroretinography and visual evoked potentials in optic nerve diseases. J. Clin. Neurosci. 13, 55–59.10.1016/j.jocn.2005.02.007Search in Google Scholar PubMed

Atkins, E.J., Bruce, B.B., Newman, N.J., and Biousse, V. (2010). Treatment of nonarteritic anterior ischemic optic neuropathy. Surv. Ophthalmol. 55, 47–63.10.1016/j.survophthal.2009.06.008Search in Google Scholar PubMed PubMed Central

Bach, M. and Hoffmann, M.B. (2006). The origin of the pattern electroretinogram. Principles and Practice of Clinical Electrophysiology of Vision. 2nd edn. J.R. Heckenlively and G.B. Arden, eds. (Cambridge, MA: MIT Press), pp. 185–196.Search in Google Scholar

Bai, Y., Xu, J., Brahimi, F., Zhuo, Y., Sarunic, M.V., and Saragovi, H.U. (2010a). An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 4722–4731.10.1167/iovs.09-5032Search in Google Scholar PubMed

Bai, Y., Dergham, P., Nedev, H., Xu, J., Galan, A., Rivera, J.C., ZhiHua, S., Mehta, H.M., Woo, S.B., Sarunic, M.V., et al. (2010b). Chronic and acute models of retinal neurodegeneration TrkA activity are neuroprotective whereas p75NTR activity is neurotoxic through a paracrine mechanism. J. Biol. Chem. 285, 39392–39400.10.1074/jbc.M110.147801Search in Google Scholar PubMed PubMed Central

Bakalash, S., Kipnis, J., Yoles, E., and Schwartz, M. (2002). Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest. Ophthalmol. Vis. Sci. 43, 2648–2653.Search in Google Scholar

Balcer, L.J. (2006). Optic neuritis. N. Eng. J. Med. 354, 1273–1280.10.1056/NEJMcp053247Search in Google Scholar PubMed

Baltan, S., Besancon, E.F., Mbow, B., Ye, Z., Hamner, M.A., and Ransom, B.R. (2008). White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J. Neurosci. 28, 1479–1489.10.1523/JNEUROSCI.5137-07.2008Search in Google Scholar PubMed PubMed Central

Beck, R.W., Cleary, P.A., Anderson, M.M. Jr., Keltner, J.L., Shults, W.T., Kaufman, D.I., Buckley, E.G., Corbett, J.J., Kupersmith, M.J., Miller, N.R., et al. (1992). A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N. Engl. J. Med. 326, 581–588.10.1056/NEJM199202273260901Search in Google Scholar PubMed

Beck, R.W., Trobe, J.D., and Moke, P.S. (2003). High- and low-risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: Experience of the optic neuritis treatment trial. Arch. Ophthalmol. 121, 944–949.10.1001/archopht.121.7.944Search in Google Scholar PubMed

Benn, S.C. and Woolf, C.J. (2004). Adult neuron survival strategies–slamming on the brakes. Nat. Rev. Neurosci. 5, 686–700.10.1038/nrn1477Search in Google Scholar PubMed

Berdahl, J.P., Allingham, R.R., and Johnson, D.H. (2008). Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology 115, 763–768.10.1016/j.ophtha.2008.01.013Search in Google Scholar PubMed

Beretta, S., Mattavelli, L., Sala, G., Tremolizzo, L., Schapira, A.H., Martinuzzi, A., Carelli, V., and Ferrarese, C. (2004). Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines. Brain 127 (Pt 10), 2183–2192.10.1093/brain/awh258Search in Google Scholar PubMed

Bernstein, S.L., Guo, Y., Kelman, S.E., Flower, R.W., and Johnson, M.A. (2003). Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy. Invest. Ophthalmol. Vis. Sci. 44, 4153–4162.10.1167/iovs.03-0274Search in Google Scholar PubMed

Bernstein, S.L., Johnson, M.A., and Miller, N.R. (2011). Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models. Prog. Retin. Eye Res. 30, 167–187.10.1016/j.preteyeres.2011.02.003Search in Google Scholar PubMed PubMed Central

Bettelli, E., Pagany, M., Weiner, H.L., Linington, C., Sobel, R.A., and Kuchroo, V.K. (2003). Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081.10.1084/jem.20021603Search in Google Scholar PubMed PubMed Central

Blakemore, W.F. and Franklin, R.J.M. (2008). Remyelination in experimental models of toxin-induced demyelination. Current Topics in Microbiology and Immunology. Advances in Multiple Sclerosis and Experimental Demyelinating Diseases. M. Rodriguez, ed. (Berlin, Heidelberg: Springer), pp. 193–212.10.1007/978-3-540-73677-6_8Search in Google Scholar PubMed

Bonfanti, L., Strettoi, E., Chierzi, S., Cenni, M.C., Liu, X.H., Martinou, J.-C., Maffei, L., and Rabacchi, S.A. (1996). Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2. J. Neurosci. 16, 4186–4194.10.1523/JNEUROSCI.16-13-04186.1996Search in Google Scholar

Bose, S., Dhillon, N., Ross-Cisneros, F.N., and Carelli, V. (2005). Relative post-mortem sparing of afferent pupil fibers in a patient with 3460 Leber’s hereditary optic neuropathy. Graefes. Arch. Clin. Exp. Ophthalmol. 243, 1175–1179.10.1007/s00417-005-0023-6Search in Google Scholar

Boucard, C.C., Hernowo, A.T., Maguire, R.P., Jansonius, N.M., Roerdink, J.B.T.M., Hooymans, J.M.M., and Cornelissen, F.W. (2009). Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain 132 (Pt 7), 1898–1906.10.1093/brain/awp119Search in Google Scholar

Brady, S.T., Witt, A.S., Kirkpatrick, L.L., de Waegh, S.M., Readhead, C., Tu, P.H., and Lee, V.M. (1999). Formation of compact myelin is required for maturation of the axonal cytoskeleton. J. Neurosci. 19, 7278–7288.10.1523/JNEUROSCI.19-17-07278.1999Search in Google Scholar

Brown, M.D., Trounce, I.A., Jun, A.S., Allen, J.C., and Wallace, D.C. (2000). Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation. J. Biol. Chem. 275, 39831–39836.10.1074/jbc.M006476200Search in Google Scholar

Bruck, W. (2005). Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. J. Neurol. 252 Suppl 5, v10–v15.10.1007/s00415-005-5003-6Search in Google Scholar

Brundin, P., Li, J.Y., Holton, J.L., Lindvall, O., and Revesz, T. (2008). Research in motion: The enigma of Parkinson’s disease pathology spread. Nat. Rev. Neurosci. 9, 741–745.10.1038/nrn2477Search in Google Scholar

Buchi, E.R. (1992). Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult: An electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp. Eye. Res. 55, 605–613.10.1016/S0014-4835(05)80173-3Search in Google Scholar

Bui, B.V. and Fortune, B. (2003). Ganglion cell contributions to the rat full-field electroretinogram. J. Physiol. 555, 153–173.10.1113/jphysiol.2003.052738Search in Google Scholar PubMed PubMed Central

Bui, B.V. and Fortune, B. (2004). Ganglion cell contributions to the rat full-field electroretinogram. J. Physiol. 555 (Pt 1), 153–173.10.1113/jphysiol.2003.052738Search in Google Scholar

Bull, N.D. and Martin, K.R. (2011). Concise review: Toward stem cell-based therapies for retinal neurodegenerative diseases. Stem Cells 29, 1170–1175.10.1002/stem.676Search in Google Scholar

Bull, N.D., Irvine, K.A., Franklin, R.J., and Martin, K.R. (2009). Transplanted oligodendrocyte precursor cells reduce neurodegeneration in a model of glaucoma. Invest. Ophthalmol. Vis. Sci. 50, 4244–4253.10.1167/iovs.08-3239Search in Google Scholar

Canteras, N.S., Ribeiro-Barbosa, E.R., Goto, M., Cipolla-Neto, J., and Swanson, L.W. (2011). The retinohypothalamic tract: Comparison of axonal projection patterns from four major targets. Brain Res. Rev. 65, 150–183.10.1016/j.brainresrev.2010.09.006Search in Google Scholar

Carrasco, J.R. and Penne, R.B. (2004). Optic nerve sheath meningiomas and advanced treatment options. Curr. Opin. Ophthalmol. 15, 406–410.10.1097/01.icu.0000138617.53435.d9Search in Google Scholar

Carroll, W.M., Jennings, A.R., and Ironside, L.J. (1998). Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination. Brain 121, 293–302.10.1093/brain/121.2.293Search in Google Scholar

Cenni, M.C., Bonfanti, L., Martinou, J.C., Ratto, G.M., Strettoi, E., and Maffei, L. (1996). Long-term survival of retinal ganglion cells following optic nerve section in adult bcl-2 transgenic mice. Eur. J. Neurosci. 8, 1735–1745.10.1111/j.1460-9568.1996.tb01317.xSearch in Google Scholar

Chao, M.V. (2003). Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309.10.1038/nrn1078Search in Google Scholar

Chao, M.V. and Bothwell, M. (2002). Neurotrophins—to cleave or not to cleave. Neuron 33, 9–12.10.1016/S0896-6273(01)00573-6Search in Google Scholar

Chaudhary, P., Ahmed, F., Quebada, P., and Sharma, S.C. (1999). Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res. Mol. Brain Res. 67, 36–45.10.1016/S0169-328X(99)00032-7Search in Google Scholar

Chen, H. and Weber, A.J. (2001). BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest. Ophthalmol. Vis. Sci. 42, 966–974.Search in Google Scholar

Chen, C.S., Johnson, M.A., Flower, R.A., Slater, B.J., Miller, N.R., and Bernstein, S.L. (2008). A primate model of nonarteritic anterior ischemic optic neuropathy. Invest. Ophthalmol. Vis. Sci. 49, 2985–2992.10.1167/iovs.07-1651Search in Google Scholar PubMed PubMed Central

Chen, H., Wei, X., Cho, K.S., Chen, G., Sappington, R., Calkins, D.J., and Chen, D.F. (2011). Optic neuropathy due to microbead-induced elevated intraocular pressure in the mouse. Invest Ophthalmol Vis. Sci. 52, 36–44.10.1167/iovs.09-5115Search in Google Scholar PubMed PubMed Central

Cheng, L., Sapieha, P., Kittlerová, P., Hauswirth, W.W., and Di Polo, A. (2002). TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J. Neurosci. 22, 3977–3986.10.1523/JNEUROSCI.22-10-03977.2002Search in Google Scholar

Cheung, Z.H., Gong, K., and Ip, N.Y. (2008). Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2’. J. Neurosci. 28, 4872–4877.10.1523/JNEUROSCI.0689-08.2008Search in Google Scholar PubMed PubMed Central

Conti, A.C., Raghupathi, R., Trojanowski, J.Q., and McIntosh, T.K. (1998). Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J. Neurosci. 18, 5663–5672.10.1523/JNEUROSCI.18-15-05663.1998Search in Google Scholar

Cordeiro, M.F., Guo, L., Luong, V., Harding, G., Wang, W., Jones, H.E., Moss, S.E., Sillito, A.M., and Fitzke, F.W. (2004). Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc. Natl. Acad. Sci. USA 101, 13352–13356.10.1073/pnas.0405479101Search in Google Scholar PubMed PubMed Central

Cursiefen, C., Korth, M., and Horn, F.K. (2001). The negative response of the flash electroretinogram in glaucoma. Documenta Ophthalmologica 103, 1–12.10.1023/A:1017539018387Search in Google Scholar

Dahlmann-Noor, A.H., Vijay, S., Limb, G.A., and Khaw, P.T. (2010). Strategies for optic nerve rescue and regeneration in glaucoma and other optic neuropathies. Drug Discov. Today 15, 287–299.10.1016/j.drudis.2010.02.007Search in Google Scholar PubMed

de Calignon, A., Polydoro, M., Suárez-Calvet, M., William, C., Adamowicz, D.H., Kopeikina, K.J., Pitstick, R., Sahara, N., Ashe, K.H., Carlson, G.A., et al. (2012). Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697.10.1016/j.neuron.2011.11.033Search in Google Scholar PubMed PubMed Central

DelMonte, D.W. and Bhatti, M.T. (2009). Ischemic optic neuropathy. Int. Ophthalmol. Clin. 49, 35–62.10.1097/IIO.0b013e3181a8df6cSearch in Google Scholar PubMed

Dickersin, K., Manheimer, E., and Li, T. (2012). Surgery for nonarteritic anterior ischemic optic neuropathy. Cochrane Database Syst. Rev. CD001538 (1).10.1002/14651858.CD001538.pub3Search in Google Scholar PubMed PubMed Central

Dong, C.J., Guo, Y., Agey, P., Wheeler, L., and Hare, W.A. (2008). Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest. Ophthalmol. Vis. Sci. 49, 4515–4522.10.1167/iovs.08-2078Search in Google Scholar

Drasdo, N., Aldebasi, Y.H., Chiti, Z., Mortlock, K.E., Morgan, J.E., and North, R.V. (2001). The S-Cone PhNR and pattern ERG in primary open angle glaucoma. Invest. Ophthalmol. Vis. Sci. 42, 1266–1272.Search in Google Scholar

Du, J.L. and Poo, M.M. (2004). Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system. Nature 429, 878–883.10.1038/nature02618Search in Google Scholar

Fahle, M. and Bach, M. (2006). Origin of the visual evoked potentials. Principles and practice of clinical electrophysiology of vision. 2nd edn. J. Heckenlively and G. Arden, eds. (Cambridge, MA: MIT Press), pp. 207–234.Search in Google Scholar

Fan, T.J., Han, L.H., Cong, R.S., and Liang, J. (2005). Caspase family proteases and apoptosis. Acta Biochimica et Biophysica Sinica 37, 719–727.10.1111/j.1745-7270.2005.00108.xSearch in Google Scholar

Fazio, D.T., Heckenlively, J.R., Martin, D.A., and Christensen, R.E. (1986). The electroretinogram in advanced open-angle glaucoma. Doc. Ophthalmol. 63, 45–54.10.1007/BF00153011Search in Google Scholar

Feinsod, M. and Auerbach, E. (1969). Changes in the electroretinogram (ERG) in lesions of the optic nerve. Electroencephalogr. Clin. Neurophysiol. 27, 217.Search in Google Scholar

Ferguson, B., Matyszak, M.K., Esiri, M.M., and Perry, V.H. (1997). Axonal damage in acute multiple sclerosis lesions. Brain 120, 393–399.10.1093/brain/120.3.393Search in Google Scholar

Flammer, J. and Orgul, S. (1998). Optic nerve blood-flow abnormalities in glaucoma. Prog. Retinal Eye Res. 17, 267–289.10.1016/S1350-9462(97)00006-2Search in Google Scholar

Flammer, J. and Mozaffarieh, M. (2007). What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv. Ophthalmol. 52 Suppl 2, S162–S173.Search in Google Scholar

Fortune, B., Bui, B.V., Cull, G., Wang, L., and Cioffi, G.A. (2004). Inter-ocular and inter-session reliability of the electroretinogram photopic negative response (PhNR) in non-human primates. Exp. Eye. Res. 78, 83–93.10.1016/j.exer.2003.09.013Search in Google Scholar

Fraser, C.L. and Holder, G.E. (2011). Electroretinogram findings in unilateral optic neuritis. Doc. Ophthalmol. 123, 173–178.10.1007/s10633-011-9294-xSearch in Google Scholar

Friedlander, M. (2012). Advances in treatment and management: Immunologic and cell-based regenerative therapies. Invest. Ophthalmol. Vis. Sci. 53, 2511–2514.10.1167/iovs.12-9483pSearch in Google Scholar

Frishman, L.J. (2006). Origins of the electroretinogram. Principles and Practice of Clinical Electrophysiology of Vision. 2nd edn. J.R. Heckenlively and G.B. Arden, eds. (Cambridge, MA: MIT Press), pp. 139–183.Search in Google Scholar

Frishman, L.J. and Sieving, P.A. (1995). Evidence for two sites of adaptation affecting the dark-adapted ERG of cats and primates. Vision Res. 35, 435–442.10.1016/0042-6989(94)00165-ISearch in Google Scholar

Frishman, L.J., Reddy, M.G., and Robson, J.G. (1996a). Effects of background light on the human dark-adapted electroretinogram and psychophysical threshold. J. Opt. Soc. Am. A. 13, 601–612.10.1364/JOSAA.13.000601Search in Google Scholar

Frishman, L.J., Shen, F.F., Du, L., Robson, J.G., Harwerth, R.S., Smith, E.L. 3rd, Carter-Dawson, L., and Crawford, M.L. (1996b). The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 37, 125–141.Search in Google Scholar

Froehlich, J. and Kaufman, D.I. (1993). The pattern electroretinogram: N95 amplitudes in normal subjects and optic neuritis patients. Electroencephalogr. Clin. Neurophysiol. 88, 83–91.10.1016/0168-5597(93)90059-XSearch in Google Scholar

Frohman, E.M., Racke, M.K., and Raine, C.S. (2006). Multiple sclerosis – the plaque and its pathogenesis. N. Eng. J. Med. 354, 942–955.10.1056/NEJMra052130Search in Google Scholar

Gao, H., Qiao, X., Hefti, F., Hollyfield, J.G., and Knusel, B. (1997). Elevated mRNA expression of brain-derived neurotrophic factor in retinal ganglion cell layer after optic nerve injury. Invest. Ophthalmol. Vis. Sci. 38, 1840–1847.Search in Google Scholar

Ghaffariyeh, A., Honarpisheh, N., Shakiba, Y., Puyan, S., Chamacham, T., Zahedi, F., and Zarrineghbal, M. (2009). Brain-derived neurotrophic factor in patients with normal-tension glaucoma. Optometry 80, 635–638.10.1016/j.optm.2008.09.014Search in Google Scholar

Ghezzi, A., Martinelli, V., Torri, V., Zaffaroni, M., Rodegher, M., Comi, G., Zibetti, A., and Canal, N. (1999). Long-term follow-up of isolated optic neuritis: The risk of developing multiple sclerosis, its outcome, and the prognostic role of paraclinical tests. J. Neurol. 246, 770–775.10.1007/s004150050453Search in Google Scholar

Gills, J.P. (1966). Electroretinographic abnormalities and advanced multiple sclerosis. Invest. Ophthalmol. 5, 555–559.Search in Google Scholar

Gold, R., Linington, C., and Lassmann, H. (2006). Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129 (Pt 8), 1953–1971.10.1093/brain/awl075Search in Google Scholar

Gotoh, Y., Machida, S., and Tazawa, Y. (2004). Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch. Ophthalmol. 122, 341–346.10.1001/archopht.122.3.341Search in Google Scholar

Green, D.R. (1998). Apoptotic pathways: The roads to ruin. Cell 94, 695–698.10.1016/S0092-8674(00)81728-6Search in Google Scholar

Grozdanic, S.D. (2003). Laser-induced mouse model of chronic ocular hypertension. Invest. Ophthalmol. Vis. Sci. 44, 4337–4346.10.1167/iovs.03-0015Search in Google Scholar PubMed

Guazzo, E.P. (2005). A technique for producing demyelination of the rat optic nerves. J. Clin. Neurosci. 12, 54–58.10.1016/j.jocn.2004.08.002Search in Google Scholar PubMed

Guo, L., Salt, T.E., Maass, A., Luong, V., Moss, S.E., Fitzke, F.W., and Cordeiro, M.F. (2006). Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest. Ophthalmol. Vis. Sci. 47, 626–633.10.1167/iovs.05-0754Search in Google Scholar PubMed PubMed Central

Guo, L., Normando, E.M., Nizari, S., Lara, D., and Cordeiro, M.F. (2010). Tracking longitudinal retinal changes in experimental ocular hypertension using the cSLO and spectral domain-OCT. Invest. Ophthalmol. Vis. Sci. 51, 6504–6513.10.1167/iovs.10-5551Search in Google Scholar PubMed PubMed Central

Guo, Y., Johnson, E.C., Cepurna, W.O., Dyck, J.A., Doser, T., and Morrison, J.C. (2011). Early gene expression changes in the retinal ganglion cell layer of a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. 2011, 1460–1473.10.1167/iovs.10-5930Search in Google Scholar PubMed PubMed Central

Gupta, N. and Yucel, Y.H. (2007). Glaucoma as a neurodegenerative disease. Curr. Opin. Ophthalmol. 18, 110–114.10.1097/ICU.0b013e3280895aeaSearch in Google Scholar PubMed

Gupta, N., Greenberg, G., de Tilly, L.N., Gray, B., Polemidiotis, M., and Yücel, Y.H. (2009). Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br. J. Ophthalmol. 93, 56–60.10.1136/bjo.2008.138172Search in Google Scholar PubMed PubMed Central

Gupta, V.K., You, Y., Klistorner, A., and Graham, S.L. (2012a). Focus on molecules: Sphingosine 1 phosphate (S1P). Exp. Eye Res. 103, 119–120.10.1016/j.exer.2011.09.023Search in Google Scholar PubMed

Gupta, A.A., Ding, D., Lee, R.K., Levy, R.B., and Bhattacharya, S.K. (2012b). Spontaneous ocular and neurologic deficits in transgenic mouse models of multiple sclerosis and noninvasive investigative modalities: A review. Invest. Ophthalmol. Vis. Sci. 53, 712–724.10.1167/iovs.11-8351Search in Google Scholar PubMed PubMed Central

Gupta, V.K., You, Y., Klistorner, A., and Graham, S.L. (2012c). Shp-2 regulates the TrkB receptor activity in the retinal ganglion cells under glaucomatous stress. Biochim. Biophys. Acta 1822, 1643–1649.10.1016/j.bbadis.2012.07.016Search in Google Scholar PubMed

Gupta, V.K., You, Y., Li, J.C., Klistorner, A., and Graham, S.L. (2013). Protective effects of 7,8-dihydroxyflavone on retinal ganglion and RGC-5 cells against excitotoxic and oxidative stress. J. Mol. Neurosci. 49, 96–104.10.1007/s12031-012-9899-xSearch in Google Scholar PubMed

Guy, J. (2000). New therapies for optic neuropathies: Development in experimental models. Curr. Opin. Ophthalmol. 11, 421–429.10.1097/00055735-200012000-00007Search in Google Scholar PubMed

Hall, S.M. (1972). The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. J. Cell. Sci. 10, 535–546.10.1242/jcs.10.2.535Search in Google Scholar

Halliday, A.M., McDonald, W.I., and Mushin, J. (1972). Delayed visual evoked response in optic neuritis. Lancet i, 982–985.10.1016/S0140-6736(72)91155-5Search in Google Scholar

Harada, C., Namekata, K., Guo, X., Yoshida, H., Mitamura, Y., Matsumoto, Y., Tanaka, K., Ichijo, H., and Harada, T. (2010). ASK1 deficiency attenuates neural cell death in GLAST-deficient mice, a model of normal tension glaucoma. Cell Death Differ. 17, 1751–1759.10.1038/cdd.2010.62Search in Google Scholar

Hardy, J. and Revesz, T. (2012). The spread of neurodegenerative disease. N. Engl. J. Med. 366, 2126–2128.10.1056/NEJMcibr1202401Search in Google Scholar

Hasegawa, Y., Suzuki, H., Sozen, T., Rolland, W., and Zhang, J.H. (2010). Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41, 368–374.10.1161/STROKEAHA.109.568899Search in Google Scholar

Hayreh, S.S. (1981). Experimental allergic encephalomyelitis. II. Retinal and other ocular manifestations. Invest. Ophthalmol. Vis. Sci. 21, 270–281.Search in Google Scholar

Hayreh, S.S. (2000). Steroid therapy for visual loss in patients with giant-cell arteritis. Lancet 355, 1572–1573.10.1016/S0140-6736(00)02210-8Search in Google Scholar

Hayreh, S.S. (2008). Animal model for nonarteritic anterior ischemic optic neuropathy. J. Neuroophthalmol. 28, 79–80.10.1097/WNO.0b013e318167828eSearch in Google Scholar PubMed

Hayreh, S.S. (2009). Ischemic optic neuropathy. Prog. Retin. Eye. Res. 28, 34–62.10.1016/j.preteyeres.2008.11.002Search in Google Scholar PubMed

Hayreh, S.S., Massanari, R.M., Yamada, T., and Hayreh, S.M. (1981). Experimental allergic encephalomyelitis. I. Optic nerve and central nervous system manifestations. Invest. Ophthalmol. Vis. Sci. 21, 256–269.Search in Google Scholar

Hofbauer, A. and Drager, U.C. (1985). Depth segregation of retinal ganglion cells projecting to mouse superior colliculus. J. Comp. Neurol. 234, 465–474.10.1002/cne.902340405Search in Google Scholar PubMed

Holcombe, D.J., Lengefeld, N., Gole, G.A., and Barnett, N.L. (2008). Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br. J. Ophthalmol. 92, 683–688.10.1136/bjo.2007.133223Search in Google Scholar PubMed

Holder, G.E., Brigell, M.G., Hawlina, M., Meigen. T., Vaegan, B.M.; International Society for Clinical Electrophysiology of Vision. (2007). ISCEV standard for clinical pattern electroretinography—2007 update. Doc. Ophthalmol. 114, 111–116.10.1007/s10633-007-9053-1Search in Google Scholar

Holder, G.E., Gale, R.P., Acheson, J.F., and Robson, A.G. (2009). Electrodiagnostic assessment in optic nerve disease. Curr. Opin. Neurol. 22, 3–10.10.1097/WCO.0b013e328320264cSearch in Google Scholar

Hu, B., Yip, H.K., and So, K.F. (1998). Localization of p75 neurotrophin receptor in the retina of the adult SD rat: An immunocytochemical study at light and electron microscopic levels. Glia 24, 187–197.10.1002/(SICI)1098-1136(199810)24:2<187::AID-GLIA4>3.0.CO;2-1Search in Google Scholar

Hu, Y., Cho, S., and Goldberg, J.L. (2010). Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 51, 1747–1754.10.1167/iovs.09-4450Search in Google Scholar

Huang, W., Fileta, J.B., Dobberfuhl, A., Filippopolous, T., Guo, Y., Kwon, G., and Grosskreutz, C.L. (2005a). Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc. Natl. Acad. Sci. USA 102, 12242–12247.10.1073/pnas.0505138102Search in Google Scholar

Huang, W., Dobberfuhl, A., Filippopoulos, T., Ingelsson, M., Fileta, J.B., Poulin, N.R., and Grosskreutz, C.L. (2005b). Transcriptional up-regulation and activation of initiating caspases in experimental glaucoma. Am. J. Pathol. 167, 673–681.10.1016/S0002-9440(10)62042-1Search in Google Scholar

Isenmann, S. (2003). Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog. Retinal Eye Res. 22, 483–543.10.1016/S1350-9462(03)00027-2Search in Google Scholar

Jang, S.W., Liu, X., Yepes, M., Shepherd, K.R., Miller, G.W., Liu, Y., Wilson, W.D., Xiao, G., Blanchi, B., Sun, Y.E., et al. (2010). A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. USA 107, 2687–2692.10.1073/pnas.0913572107Search in Google Scholar

Jeffery, G. and Erskine, L. (2005). Variations in the architecture and development of the vertebrate optic chiasm. Prog. Retin. Eye Res. 24, 721–753.10.1016/j.preteyeres.2005.04.005Search in Google Scholar

Ji, J.Z., Elyaman, W., Yip, H.K., Lee, V.W., Yick, L.W., Hugon, J., and So, K.F. (2004). CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: The possible involvement of STAT3 pathway. Eur. J. Neurosci. 19, 265–272.10.1111/j.0953-816X.2003.03107.xSearch in Google Scholar

Johnson, T.V. and Tomarev, S.I. (2010). Rodent models of glaucoma. Brain Res. Bull. 81, 349–358.10.1016/j.brainresbull.2009.04.004Search in Google Scholar

Jonas, J.B. (2011). Role of cerebrospinal fluid pressure in the pathogenesis of glaucoma. Acta Ophthalmol. 89, 505–514.10.1111/j.1755-3768.2010.01915.xSearch in Google Scholar

Jones, S. (2005). Electrophysiological correlates of relapse, remission, persistent sensorimotor deficit, and long-term recovery processes in multiple sclerosis. Multiple Sclerosis as a Neuronal Disease. S.G. Waxman, ed. (Burlington, MA: Elsevier Academic Press), pp. 227–239.10.1016/B978-012738761-1/50017-1Search in Google Scholar

Kase, S., Yoshida, K., Suzuki, S., Ohshima, K., Ohno, S., and Ishida, S. (2011). Diffuse infiltrating retinoblastoma invading subarachnoid space. Clin. Ophthalmol. 5, 861–863.Search in Google Scholar

Kaufman, D.I., Trobe, J.D., Eggenberger, E.R., and Whitaker, J.N. (2000). Practice parameter: The role of corticosteroids in the management of acute monosymptomatic optic neuritis. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54, 2039–2044.10.1212/WNL.54.11.2039Search in Google Scholar

Kermer, P., Klöcker, N., Labes, M., and Bähr, M. (1998). Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J. Neurosci. 18, 4656–4662.10.1523/JNEUROSCI.18-12-04656.1998Search in Google Scholar

Kermer, P., Ankerhold, R., Klöcker, N., Krajewski, S., Reed, J.C., and Bähr, M. (2000). Caspase-9: Involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Mol. Brain. Res. 85, 144–150.10.1016/S0169-328X(00)00256-4Search in Google Scholar

Kiernan, J.A. and Hudson, A.J. (1991). Changes in size of cortical and lower motor neurons in amyotrophic lateral sclerosis. Brain 114, 843–853.10.1093/brain/114.2.843Search in Google Scholar PubMed

Kim, T.W., Kang, K.B., Choung, H.-K., Park, K.H., and Kim, D.M. (2000). Elevated glutamate levels in the vitreous body of an in vivo model of optic nerve ischemia. Arch. Ophthalmol. 118, 533–536.10.1001/archopht.118.4.533Search in Google Scholar PubMed

Klistorner, A., Graham, S.L., Martins, A., Grigg, J.R., Arvind, H., Kumar, R.S., James, A.C., and Billson, F.A. (2007a). Multifocal blue-on-yellow visual evoked potentials in early glaucoma. Ophthalmology 114, 1613–1621.10.1016/j.ophtha.2006.11.037Search in Google Scholar PubMed

Klistorner, A., Graham, S., Fraser, C., Garrick, R., Nguyen, T., Paine, M., O’Day, J., Grigg, J., Arvind, H., and Billson, F.A. (2007b). Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Invest. Ophthalmol. Vis. Sci. 48, 4549–4556.10.1167/iovs.07-0381Search in Google Scholar PubMed

Klistorner, A., Arvind, H., Nguyen, T., Garrick, R., Paine, M., Graham, S., O’Day, J., Grigg, J., Billson, F., and Yiannikas, C. (2008). Axonal loss and myelin in early ON loss in postacute optic neuritis. Ann. Neurol. 64, 325–331.10.1002/ana.21474Search in Google Scholar

Klocker, N. and Kermer, P. (2000). Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3’-kinase:protein kinase B signaling. J. Neurosci. 20, 6962–6967.10.1523/JNEUROSCI.20-18-06962.2000Search in Google Scholar

Kohzaki, K., Vingrys, A.J., and Bui, B.V. (2008). Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest. Ophthalmol. Vis. Sci. 49, 3595–3604.10.1167/iovs.08-1679Search in Google Scholar

Kornek, B., Storch, M.K., Weissert, R., Wallstroem, E., Stefferl, A., Olsson, T., Linington, C., Schmidbauer, M., and Lassmann, H. (2000). Multiple sclerosis and chronic autoimmune encephalomyelitis: A comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276.10.1016/S0002-9440(10)64537-3Search in Google Scholar

Kuhlmann, T., Lingfeld, G., Bitsch, A., Schuchardt, J., and Brück, W. (2002). Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125, 2202–2212.10.1093/brain/awf235Search in Google Scholar PubMed

Kumamaru, E., Numakawa, T., Adachi, N., and Kunugi, H. (2011). Glucocorticoid suppresses BDNF-stimulated MAPK/ERK pathway via inhibiting interaction of Shp2 with TrkB. FEBS Lett. 585, 3224–3228.10.1016/j.febslet.2011.09.010Search in Google Scholar PubMed

Kwon, Y.H., Fingert, J.H., Kuehn, M.H., and Alward, W.L.M. (2009). Primary open-angle glaucoma. N. Engl. J. Med. 360, 1113–1124.10.1056/NEJMra0804630Search in Google Scholar PubMed PubMed Central

Lachapelle, F., Bachelin, C., Moissonnier, P., Nait-Oumesmar, B., Hidalgo, A., Fontaine, D., and Baron-Van Evercooren, A. (2005). Failure of remyelination in the nonhuman primate optic nerve. Brain Pathol. 15, 198–207.10.1111/j.1750-3639.2005.tb00521.xSearch in Google Scholar PubMed PubMed Central

Lassmann, H. (2005). pathology of neurons in multiple sclerosis. Multiple Sclerosis as a Neuronal Disease. S.G. Waxman, ed. (Amsterdam: Elsevier), pp. 153–164.10.1016/B978-012738761-1/50012-2Search in Google Scholar

Lau, C., Zhang, J.W., Xing, K.K., Zhou, I.Y., Cheung, M.M., Chan, K.C., and Wu, E.X. (2011). BOLD responses in the superior colliculus and lateral geniculate nucleus of the rat viewing an apparent motion stimulus. Neuroimage 58, 878–884.10.1016/j.neuroimage.2011.06.055Search in Google Scholar PubMed

Leamey, C.A., Protti, D.A., and Dreher, B. (2008). Comparative survey of the mammalian visual system with reference to the mouse. Eye, Retina, and Visual System of the Mouse. L. M. Chalupa and R. W. Williams, eds. (MIT Press), pp. 35–60.Search in Google Scholar

Lebrun-Julien, F., Morquette, B., Douillette, A., Saragovi, H.U., and Di Polo, A. (2009). Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Mol. Cell. Neurosci. 40, 410–420.10.1016/j.mcn.2008.12.005Search in Google Scholar

Lebrun-Julien, F., Bertrand, M.J., De Backer, O., Stellwagen, D., Morales, C.R., Di Polo, A., and Barker, P.A. (2010). ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc. Natl. Acad. Sci. USA 107, 3817–3822.10.1073/pnas.0909276107Search in Google Scholar

Levin, L.A. (2007). Axonal loss and neuroprotection in optic neuropathies. Can. J. Ophthalmol. 42, 403–408.10.3129/i07-046Search in Google Scholar

Libby, R.T., Li, Y., Savinova, O.V., Barter, J., Smith, R.S., Nickells, R.W., and John, S.W. (2005). Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 1, 17–26.10.1371/journal.pgen.0010004Search in Google Scholar

Limb, G.A. and Martin, K.R. (2011). Current prospects in optic nerve protection and regeneration: Sixth ARVO/Pfizer Ophthalmics Research Institute conference. Invest. Ophthalmol. Vis. Sci. 52, 5941–5954.10.1167/iovs.10-6894Search in Google Scholar

Lindsey, J.D. and Weinreb, R.N. (2005). Elevated intraocular pressure and transgenic applications in the mouse. J. Glaucoma 14, 318–320.10.1097/01.ijg.0000169411.09258.f6Search in Google Scholar

Lipton, S.A. (2003). Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv. Ophthalmol. 48 Suppl 1, S38–S46.10.1016/S0039-6257(03)00008-0Search in Google Scholar

Liu, M., Duggan, J., Salt, T.E., and Cordeiro, M.F. (2011). Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp. Eye Res. 92, 244–250.10.1016/j.exer.2011.01.014Search in Google Scholar PubMed

Liu, L., Drouet, V., Wu, J.W., Witter, M.P., Small, S.A., Clelland, C., and Duff, K. (2012). Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7, e31302.10.1371/journal.pone.0031302Search in Google Scholar PubMed PubMed Central

Lucchinetti, C.F., Popescu, B.F.G., Bunyan, R.F., Moll, N.M., Roemer, M.D., Lassmann, H., Brück, W., Parisi, J.E., Scheithauer, B.W., Giannini, C., et al. (2011). Inflammatory cortical demyelination in early multiple sclerosis. N. Eng. J. Med. 365, 2188–2197.10.1056/NEJMoa1100648Search in Google Scholar PubMed PubMed Central

Madill, S.A. and Riordan-Eva, P. (2004). Disorders of the anterior visual pathways. J. Neurol. Neurosurg. Psychiatry 75 Suppl 4, iv12–iv19.10.1136/jnnp.2004.053421Search in Google Scholar PubMed PubMed Central

Magoon, E.H. and Robb, R.M. (1981). Development of myelin in human optic nerve and tract. A light and electron microscopic study. Arch. Ophthalmol. 99, 655–659.10.1001/archopht.1981.03930010655011Search in Google Scholar PubMed

Maier, K., Rau, C.R., Storch, M.K., Sättler, M.B., Demmer, I., Weissert, R., Taheri, N., Kuhnert, A.V., Bähr, M., and Diem, R. (2004). Ciliary neurotrophic factor protects retinal ganglion cells from secondary cell death during acute autoimmune optic neuritis in rats. Brain Pathol. 14, 378–387.10.1111/j.1750-3639.2004.tb00081.xSearch in Google Scholar PubMed PubMed Central

Malik, J.M., Shevtsova, Z., Bähr, M., and Kügler, S. (2005). Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer. Mol. Ther. 11, 373–381.10.1016/j.ymthe.2004.11.014Search in Google Scholar PubMed

Marcic, T.S., Belyea, D.A., and Katz, B. (2003). Neuroprotection in glaucoma: A model for neuroprotection in optic neuropathies. Curr. Opin. Ophthalmol. 14, 353–356.10.1097/00055735-200312000-00006Search in Google Scholar PubMed

Marmor, M.F., Fulton, A.B., Holder, G.E., Miyake, Y., Brigell, M., Bach, M.; International Society for Clinical Electrophysiology of Vision. (2009). ISCEV Standard for full-field clinical electroretinography (2008 update). Doc. Ophthalmol. 118, 69–77.10.1007/s10633-008-9155-4Search in Google Scholar PubMed

Martin, K.R.G. (2003). Gene therapy with brain-derived neurotrophic factor as a protection: Retinal ganglion cells in a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. 44, 4357–4365.10.1167/iovs.02-1332Search in Google Scholar PubMed

Martin, K.R. and Quigley, H.A. (2004). Gene therapy for optic nerve disease. Eye (Lond). 18, 1049–1055.10.1038/sj.eye.6701579Search in Google Scholar PubMed

Mattson, M.P. (2007). Calcium and neurodegeneration. Aging Cell 6, 337–350.10.1111/j.1474-9726.2007.00275.xSearch in Google Scholar PubMed

McKernan, D.P. and Cotter, T.G. (2007). A critical role for Bim in retinal ganglion cell death. J. Neurochem. 102, 922–930.10.1111/j.1471-4159.2007.04573.xSearch in Google Scholar PubMed

McKinnon, S. J., Schlamp, C. L., and Nickells, R. W. (2009). Mouse models of retinal ganglion cell death and glaucoma. Exp. Eye Res. 88, 816–824.10.1016/j.exer.2008.12.002Search in Google Scholar

Meyer, R., Weissert, R., Diem, R., Storch, M.K., de Graaf, K.L., Kramer, B., and Bahr, M. (2001). Acute neuronal apoptosis in a rat model of multiple sclerosis. J. Neurosci. 21, 6214–6220.10.1523/JNEUROSCI.21-16-06214.2001Search in Google Scholar

Midorikawa, R., Takei, Y., and Hirokawa, N. (2006). KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125, 371–383.10.1016/j.cell.2006.02.039Search in Google Scholar

Milea, D., Amati-Bonneau, P., Reynier, P., and Bonneau, D. (2010). Genetically determined optic neuropathies. Curr. Opin. Neurol. 23, 24–28.10.1097/WCO.0b013e3283347b27Search in Google Scholar

Minichiello, L. (2009). TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10, 850–860.10.1038/nrn2738Search in Google Scholar

Miyake, K., Yoshida, M., Inoue, Y., and Hata, Y. (2007). Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Invest. Ophthalmol. Vis. Sci. 48, 2356–23561.10.1167/iovs.06-1329Search in Google Scholar

Morimoto, T., Miyoshi, T., Fujikado, T., Tano, Y., and Fukuda, Y. (2002). Electrical stimulation enhances the survival of axotomized retinal ganglion cells in vivo. Neuroreport 13, 227–230.10.1097/00001756-200202110-00011Search in Google Scholar

Morin, L.P. (1994). The circadian visual system. Brain Res. Rev. 67, 102–127.10.1016/0165-0173(94)90005-1Search in Google Scholar

Morrison, J.C., Moore, C.G., Deppmeier, L.M., Gold, B.G., Meshul, C.K., and Johnson, E.C. (1997). A rat model of chronic pressure-induced optic nerve damage. Exp. Eye Res. 64, 85–96.10.1006/exer.1996.0184Search in Google Scholar PubMed

Morrison, J.C., Johnson, E.C., Cepurna, W.O., and Funk, R.H. (1999). Microvasculature of the rat optic nerve head. Invest. Ophthalmol. Vis. Sci. 40, 1702–1709.Search in Google Scholar

Morrison, J.C., Cepurna Ying Guo, W.O., and Johnson, E.C. (2011). Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma. Exp. Eye Res. 93, 156–164.10.1016/j.exer.2010.08.005Search in Google Scholar PubMed PubMed Central

Moschovakis, A.K. (1996). The superior colliculus and eye movement control. Curr. Opin. Neurobiol. 6, 811–816.10.1016/S0959-4388(96)80032-8Search in Google Scholar

Mozafari, S., Sherafat, M.A., Javan, M., Mirnajafi-Zadeh, J., and Tiraihi, T. (2010). Visual evoked potentials and MBP gene expression imply endogenous myelin repair in adult rat optic nerve and chiasm following local lysolecithin induced demyelination. Brain Res. 1351, 50–56.10.1016/j.brainres.2010.07.026Search in Google Scholar

Mozafari, S., Javan, M., Sherafat, M.A., Mirnajafi-Zadeh, J., Heibatollahi, M., Pour-Beiranvand, S., Tiraihi, T., and Ahmadiani, A. (2011). Analysis of structural and molecular events associated with adult rat optic chiasm and nerves demyelination and remyelination: Possible role for 3rd ventricle proliferating cells. Neuromol. Med. 13, 138–150.10.1007/s12017-011-8143-0Search in Google Scholar

Naarendorp, F., Sato, Y., Cajdric, A., and Hubbard, N.P. (2001). Absolute and relative sensitivity of the scotopic system of rat: Electroretinography and behavior. Vis. Neurosci. 18, 641–656.10.1017/S0952523801184142Search in Google Scholar

Nadkarni, N. and Lisak, R.P. (1993). Guillain-Barré syndrome (GBS) with bilateral optic neuritis and central white matter disease. Neurology 43, 842–843.10.1212/WNL.43.4.842Search in Google Scholar

Nakazawa, T., Nakazawa, C., Matsubara, A., Noda, K., Hisatomi, T., She, H., Michaud, N., Hafezi-Moghadam, A., Miller, J.W., and Benowitz, L.I. (2006). Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J. Neurosci. 26, 12633–12641.10.1523/JNEUROSCI.2801-06.2006Search in Google Scholar

Neel, B.G., Gu, H., and Pao, L. (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293.10.1016/S0968-0004(03)00091-4Search in Google Scholar

Neufeld, A.H., Das, S., Vora, S., Gachie, E., Kawai, S., Manning, P.T., and Connor, J.R. (2002). A prodrug of a selective inhibitor of inducible nitric oxide synthase is neuroprotective in the rat model of glaucoma. J. Glaucoma 11, 221–225.10.1097/00061198-200206000-00010Search in Google Scholar PubMed

Newman, N.J. (1996). Optic neuropathy. Neurology 46, 315–322.10.1212/WNL.46.2.315Search in Google Scholar

Niemeyer, G. (2005). ERG components of negative polarity from the inner retina and the optic nerve response. Doc. Ophthalmol. 111, 179–189.10.1007/s10633-005-5504-8Search in Google Scholar PubMed

O’Neill, E.C., Mackey, D.A., Connell, P.P., Hewitt, A.W., Danesh-Meyer, H.V., and Crowston, J.G. (2009). The optic nerve head in hereditary optic neuropathies. Nat. Rev. Neurol. 5, 277–287.10.1038/nrneurol.2009.40Search in Google Scholar PubMed

O’Neill, E.C., Danesh-Meyer, H.V., Connell, P.P., Trounce, I.A., Coote, M.A., Mackey, D.A., and Crowston, J.G. (2010). The optic nerve head in acquired optic neuropathies. Nat. Rev. Neurol. 6, 221–236.10.1038/nrneurol.2010.5Search in Google Scholar PubMed

Odom, J.V., Bach, M., Brigell, M., Holder, G.E., McCulloch, D.L., Tormene, A.P., and Vaegan. (2010). ISCEV standard for clinical visual evoked potentials (2009 update). Doc. Ophthalmol. 120, 111–119.10.1007/s10633-009-9195-4Search in Google Scholar PubMed

Ohlmann, A. and Tamm, E.R. (2012). Norrin: Molecular and functional properties of an angiogenic and neuroprotective growth factor. Prog. Retin. Eye Res. 31, 243–257.10.1016/j.preteyeres.2012.02.002Search in Google Scholar PubMed

Pacelli, R., Cella, L., Conson, M., Tranfa, F., Strianese, D., Liuzzi, R., Solla, R., Farella, A., Salvatore, M., and Bonavolonta, G. (2011). Fractionated stereotactic radiation therapy for orbital optic nerve sheath meningioma – a single institution experience and a short review of the literature. J. Radiat. Res. 52, 82–87.10.1269/jrr.10139Search in Google Scholar PubMed

Peachey, N.S. and Ball, S.L. (2003). Electrophysiological analysis of visual function in mutant mice. Doc. Ophthalmol. 107, 13–36.10.1023/A:1024448314608Search in Google Scholar

Pease, M.E., McKinnon, S.J., Quigley, H.A., Kerrigan-Baumrind, L.A., and Zack, D.J. (2000). Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 41, 764–774.Search in Google Scholar

Pelletier, D. and Hafler, D.A. (2012). Fingolimod for multiple sclerosis. N. Eng. J. Med. 366, 339–347.10.1056/NEJMct1101691Search in Google Scholar PubMed

Pernet, V., Bourgeois, P., and Di Polo, A. (2007). A role for polyamines in retinal ganglion cell excitotoxic death. J. Neurochem. 103, 1481–1490.10.1111/j.1471-4159.2007.04843.xSearch in Google Scholar PubMed

Peterson, J., Kidd, D., and Trapp, B.D. (2005). Axonal degeneration in multiple sclerosis: The histopathological evidence. Multiple Sclerosis as a Neuronal Disease, S.G. Waxman, ed. (Amsterdam: Elsevier), pp. 165–184.10.1016/B978-012738761-1/50013-4Search in Google Scholar

Planchamp, V., Bermel, C., Tönges, L., Ostendorf, T., Kügler, S., Reed, J.C., Kermer, P., Bähr, M., and Lingor, P. (2008). BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of ROCK activity. Brain 131 (Pt 10), 2606–2619.10.1093/brain/awn196Search in Google Scholar PubMed

Purves, D. (2001). Central visual pathways. Neuroscience 2nd edn. D. Purves, et al., eds. (Sunderland, MA: Sinauer Associates).Search in Google Scholar

Qi, X., Sun, L., Lewin, A.S., Hauswirth, W.W., and Guy, J. (2007). The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest. Ophthalmol. Vis. Sci. 48, 1–10.10.1167/iovs.06-0789Search in Google Scholar

Qiu, W., Wei, R., Zhang, C., Zhang, C., Leng, W., and Wang, W. (2010). A glycine site-specific NMDA receptor antagonist protects retina ganglion cells from ischemic injury by modulating apoptotic cascades. J. Cell. Physiol. 223, 819–826.10.1002/jcp.22118Search in Google Scholar

Qu, J., Wang, D., and Grosskreutz, C.L. (2010). Mechanisms of retinal ganglion cell injury and defense in glaucoma. Exp. Eye Res. 91, 48–53.10.1016/j.exer.2010.04.002Search in Google Scholar

Quigley, H.A. and Broman, A.T. (2006). The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90, 262–267.10.1136/bjo.2005.081224Search in Google Scholar

Rangaswamy, N.V., Frishman, L.J., Dorotheo, E.U., Schiffman, J.S., Bahrani, H.M., and Tang, R.A. (2004). Photopic ERGs in patients with optic neuropathies: Comparison with primate ERGs after pharmacologic blockade of inner retina. Invest. Ophthalmol. Vis. Sci. 45, 3827–3837.10.1167/iovs.04-0458Search in Google Scholar

Rangaswamy, N.V., Zhou, W., Harwerth, R.S., and Frishman, L.J. (2006). Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG. Invest. Ophthalmol. Vis. Sci. 47, 753–767.10.1167/iovs.05-1051Search in Google Scholar

Ren, R., Jonas, J.B., Tian, G., Zhen, Y., Ma, K., Li, S., Wang, H., Li, B., Zhang, X., and Wang, N. (2010). Cerebrospinal fluid pressure in glaucoma: A prospective study. Ophthalmol. 117, 259–266.10.1016/j.ophtha.2009.06.058Search in Google Scholar

Ren, R., Li, Y., Liu, Z., Liu, K., and He, S. (2012). Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure. Invest. Ophthalmol. Vis. Sci. 53, 1003–10011.10.1167/iovs.11-8484Search in Google Scholar

Riordan-Eva, P. (2004). Anatomy & Embryology of the Eye. Vaughan & Asbury’s General Ophthalmology 16th edn. P. Riordan-Eva and J.P. Whitcher, eds. (Columbus, OH: McGraw-Hill), pp. 1–28.Search in Google Scholar

Riordan-Eva, P. and Hoyt, W.F. (2004). Neuro-ophthalmology. Vaughan & Asbury’s General Ophthalmology 16th edn. P. Riordan-Eva and J.P. Whitcher, eds. (Columbus, OH: McGraw-Hill), pp. 261–306.Search in Google Scholar

Russo, R., Cavaliere, F., Rombolà, L., Gliozzi, M., Cerulli, A., Nucci, C., Fazzi, E., Bagetta, G., Corasaniti, M.T., and Morrone, L.A. (2008a). Rational basis for the development of coenzyme as a neurotherapeutic agent for retinal protection. Prog. Brain Res. 173, 575–582.10.1016/S0079-6123(08)01139-4Search in Google Scholar

Russo, R., Cavaliere, F., Berliocchi, L., Nucci, C., Gliozzi, M., Mazzei, C., Tassorelli, C., Corasaniti, M.T., Rotiroti, D., Bagetta, G., et al. (2008b). Modulation of pro-survival and death-associated pathways under retinal ischemia/reperfusion: Effects of NMDA receptor blockade. J. Neurochem. 107, 1347–1357.10.1111/j.1471-4159.2008.05694.xSearch in Google Scholar PubMed

Salgado, C., Vilson, F., Miller, N.R., and Bernstein, S.L. (2011). Cellular inflammation in nonarteritic anterior ischemic optic neuropathy and its primate model. Arch. Ophthalmol. 129, 1583–1591.10.1001/archophthalmol.2011.351Search in Google Scholar

Samsel, P.A., Kisiswa, L., Erichsen, J.T., Cross, S.D., and Morgan, J.E. (2011). A novel method for the induction of experimental glaucoma using magnetic microspheres. Invest. Ophthalmol. Vis. Sci. 52, 1671–1675.10.1167/iovs.09-3921Search in Google Scholar

Sappington, R.M., Carlson, B.J., Crish, S.D., and Calkins, D.J. (2010). The microbead occlusion model: A paradigm for induced ocular hypertension in rats and mice. Invest. Ophthalmol. Vis. Sci. 51, 207–216.10.1167/iovs.09-3947Search in Google Scholar

Saszik, S.M., Robson, J.G., and Frishman, L.J. (2002). The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J. Physiol. 543 (Pt 3), 899–916.10.1113/jphysiol.2002.019703Search in Google Scholar

Scherer, S. (1999). Axonal pathology in demyelinating diseases. Ann. Neurol. 45, 6–7.10.1002/1531-8249(199901)45:1<6::AID-ART3>3.0.CO;2-3Search in Google Scholar

Schlieve, C.R., Tam, A., Nilsson, B.L., Lieven, C.J., Raines, R.T., and Levin, L.A. (2006). Synthesis and characterization of a novel class of reducing agents that are highly neuroprotective for retinal ganglion cells. Exp. Eye Res. 83, 1252–1259.10.1016/j.exer.2006.07.002Search in Google Scholar

Schrier, S.A. and Falk, M.J. (2011). Mitochondrial disorders and the eye. Curr. Opin. Ophthalmol. 22, 325–331.10.1097/ICU.0b013e328349419dSearch in Google Scholar

Schwartz, M. and Yoles, E. (2000). Neuroprotection: A new treatment modality for glaucoma? Curr. Opin. Ophthalmol. 11, 107–111.10.1097/00055735-200004000-00007Search in Google Scholar

Scolding, N.J. and Franklin, R. (1998). Axon loss in multiple sclerosis. Lancet 352, 340–341.10.1016/S0140-6736(05)60463-1Search in Google Scholar

Sefton, A.J. and Dreher, B. (2004). Visual system. The Rat Nervous System 3rd edn. G. Paxinos, ed. (San Diego: Elsevier), pp. 1082–1165.10.1016/B978-012547638-6/50033-XSearch in Google Scholar

Shareef, S.R., Garcia-Valenzuela, E., Salierno, A., Walsh, J., and Sharma, S.C. (1995). Chronic ocular hypertension following episcleral venous occlusion in rats. Exp. Eye Res. 61, 379–382.10.1016/S0014-4835(05)80131-9Search in Google Scholar

Shibata, K., Shibagaki, Y., Nagai, C., and Iwata, M. (1999). Visual evoked potentials and electroretinograms in an early stage of Leber’s hereditary optic neuropathy. J. Neurol. 246, 847–849.10.1007/s004150050468Search in Google Scholar PubMed

Sieving, P.A. and Nino, C. (1988). Scotopic threshold response (STR) of the human electroretinogram. Invest. Ophthalmol. Vis. Sci. 29, 1608–1614.Search in Google Scholar

Smith, K.J. and Waxman, S.G. (2005). The conduction properties of demyelinated and remyelinated axons. Multiple Sclerosis as a Neuronal Disease. S.G. Waxman, ed. (Burlington, MA: Elsevier Academic Press), pp. 85–100.10.1016/B978-012738761-1/50007-9Search in Google Scholar

Su, J.H., Deng, G., and Cotman, C.W. (1997). Transneuronal degeneration in the spread of Alzheimer’s disease pathology: Immunohistochemical evidence for the transmission of tau hyperphosphorylation. Neurobiol. Dis. 4, 365–375.10.1006/nbdi.1997.0164Search in Google Scholar PubMed

Sugiyama, K., Gu, Z.-B., Kawase, C., Yamamoto, T., and Kitazawa, Y. (1999). Optic nerve and peripapillary choroidal microvasculature of the rat eye. Invest. Ophthalmol. Vis. Sci. 40, 3084–3090.Search in Google Scholar

Sun, H., Wang, Y., Pang, I.-H., Shen, J., Tang, X., Li, Y., Liu, C., and Li, B. (2011). Protective effect of a JNK inhibitor against retinal ganglion cell loss induced by acute moderate ocular hypertension. Mol. Vis. 17, 864–875.Search in Google Scholar

Takeuchi, N., Horikoshi, T., Kinouchi, H., Watanabe, A., Yagi, T., Mitsuka, K., and Senbokuya, N. (2012). Diagnostic value of the optic nerve sheath subarachnoid space in patients with intracranial hypotension syndrome. J. Neurosurg. 117, 372–377.10.3171/2012.5.JNS1271Search in Google Scholar PubMed

Takihara, Y., Inatani, M., Hayashi, H., Adachi, N., Iwao, K., Inoue, T., Iwao, M., and Tanihara, H. (2011). Dynamic imaging of axonal transport in living retinal ganglion cells in vitro. Invest. Ophthalmol. Vis. Sci. 52, 3039–3045.10.1167/iovs.10-6435Search in Google Scholar PubMed

Tezel, G. and Wax, M.B. (2000). Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J. Neurosci. 20, 8693–8700.10.1523/JNEUROSCI.20-23-08693.2000Search in Google Scholar

Tezel, G., Yang, X., Yang, J., and Wax, M.B. (2004). Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res. 996, 202–212.10.1016/j.brainres.2003.10.029Search in Google Scholar PubMed

Trapp, B.D., Peterson, J., and Ransohoff, R.M. (1998). Axonal transection in the lesions of multiple sclerosis. N. Eng. J. Med. 338, 278–285.10.1056/NEJM199801293380502Search in Google Scholar PubMed

Trick, G.L. (2006). The Pattern Electroretinogram in Glaucoma and Ocular Hypertension. Principles and Practice of Clinical Electrophysiology of Vision. 2nd edn. J.R. Heckenlively and G.B. Arden, eds. (Cambridge, MA: MIT Press), pp. 851.Search in Google Scholar

Uchibayashi, R., Tsuruma, K., Inokuchi, Y., Shimazawa, M., and Hara, H. (2011). Involvement of Bid and caspase-2 in endoplasmic reticulum stress- and oxidative stress-induced retinal ganglion cell death. J. Neurosci. Res. 89, 1783–1794.10.1002/jnr.22691Search in Google Scholar PubMed

Urcola, J.H., Hernandez, M., and Vecino, E. (2006). Three experimental glaucoma models in rats: Comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. Exp. Eye Res. 83, 429–437.10.1016/j.exer.2006.01.025Search in Google Scholar

Van Bergen, N.J., Wood, J.P.M., Chidlow, G., Trounce, I.A., Casson, R.J., Ju, W.-K., Weinreb, R.N., and Crowston, J.G. (2009). Recharacterization of the RGC-5 retinal ganglion cell line. Invest. Ophthalmol. Vis. Sci. 50, 4267–4272.10.1167/iovs.09-3484Search in Google Scholar

Vidal-Sanz, M., Salinas-Navarro, M., Nadal-Nicolás, F.M., Alarcón-Martínez, L., Valiente-Soriano, F.J., de Imperial, J.M., Avilés-Trigueros, M., Agudo-Barriuso, M., and Villegas-Pérez, M.P. (2012). Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas. Prog. Retinal Eye Res. 31, 1–27.10.1016/j.preteyeres.2011.08.001Search in Google Scholar

Vila, M. and Przedborski, S. (2003). Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 365–375.10.1038/nrn1100Search in Google Scholar

Viswanathan, S., Frishman, L.J., Robson, J.G., Harwerth, R.S., and Smith III, E.L. (1999). The photopic negative response of the macaque electroretinogram: Reduction by experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 40, 1124–1136.Search in Google Scholar

Viswanathan, S., Frishman, L.J., and Robson, J.G. (2000). The uniform field and pattern ERG in macaques with experimental glaucoma: Removal of spiking activity. Invest. Ophthalmol. Vis. Sci. 41, 2797–2810.Search in Google Scholar

Viswanathan, S., Frishman, L.J., Robson, J.G., and Walters, J.W. (2001). The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest. Ophthalmol. Vis. Sci. 42, 514–522.Search in Google Scholar

Wang, J.T., Medress, Z.A., and Barres, B.A. (2012). Axon degeneration: Molecular mechanisms of a self-destruction pathway. J. Cell. Biol. 196, 7–18.10.1083/jcb.201108111Search in Google Scholar

Watanabe, M. and Fukuda, Y. (2002). Survival and axonal regeneration of retinal ganglion cells in adult cats. Prog. Retin. Eye Res. 21, 529–553.10.1016/S1350-9462(02)00037-XSearch in Google Scholar

You, Y., Klistorner, A., Thie, J., and Graham, S.L. (2011a). Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Invest. Ophthalmol. Vis. Sci. 52, 6911–6918.10.1167/iovs.11-7434Search in Google Scholar PubMed

You, Y., Klistorner, A., Thie, J., and Graham, S.L. (2011b). Improving reproducibility of VEP recording in rats: Electrodes, stimulus source and peak analysis. Doc. Ophthalmol. 123, 109–119.10.1007/s10633-011-9288-8Search in Google Scholar PubMed

You, Y., Klistorner, A., Thie, J., Gupta, V.K., and Graham, S.L. (2012a). Axonal loss in a rat model of optic neuritis is closely correlated with visual evoked potential amplitudes using electroencephalogram based scaling. Invest. Ophthalmol. Vis. Sci. 53, 3662.10.1167/iovs.12-9843Search in Google Scholar PubMed

You, Y., Thie, J., Klistorner, A., Gupta, V.K., and Graham, S.L. (2012b). Normalization of visual evoked potentials using underlying electroencephalogram levels improves amplitude reproducibility in rats. Invest. Ophthalmol. Vis. Sci. 53, 1473–1478.10.1167/iovs.11-8797Search in Google Scholar PubMed

You, Y., Gupta, V.K., Graham, S.L., and Klistorner, A. (2012c). Anterograde degeneration along the visual pathway after optic nerve injury. PLoS ONE 7, e52061.10.1371/journal.pone.0052061Search in Google Scholar

Youl, B.D., Turano, G., Miller, D.H., Towell, A.D., MacManus, D.G., Moore, S.G., Jones, S.J., Barrett, G., Kendall, B.E., Moseley, I.F., et al. (1991). The pathophysiology of acute optic neuritis: An association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114, 2437–2450.10.1093/brain/114.6.2437Search in Google Scholar

Youle, R.J. and Strasser, A. (2008). The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell. Biol. 9, 47–59.10.1038/nrm2308Search in Google Scholar

Yu, H., Koilkonda, R.D., Chou, T.H., Porciatti, V., Ozdemir, S.S., Chiodo, V., Boye, S.L., Boye, S.E., Hauswirth, W.W., Lewin, A.S., et al. (2012). Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc. Natl. Acad. Sci. USA 109, E1238–E1247.10.1073/pnas.1119577109Search in Google Scholar

Yu-Wai-Man, P., Griffiths, P.G., and Chinnery, P.F. (2011). Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog. Retin. Eye Res. 30, 81–114.10.1016/j.preteyeres.2010.11.002Search in Google Scholar

Yücel, Y. (2003). Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog. Retin. Eye Res. 22, 465–481.10.1016/S1350-9462(03)00026-0Search in Google Scholar

Zanna, C., Ghelli, A., Porcelli, A.M., Martinuzzi, A., Carelli, V., and Rugolo, M. (2005). Caspase-independent death of Leber’s hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and endonuclease G. Apoptosis 10, 997–1007.10.1007/s10495-005-0742-5Search in Google Scholar

Zhang, J., Rubin, R.M., and Rao, N.A. (2007). Anatomy and Embryology of the Optic Nerve. Duane’s Foundations of Clinical Ophthalmology. W. Tasman and E.A. Jaeger, eds. (Philadelphia, PA: Lippincott Williams & Wilkins).Search in Google Scholar

Zhu, B., Wayne Moore, G.R., Zwimpfer, T.J., Kastrukoff, L.F., Dyer, J.K., Steeves, J.D., Paty, D.W., and Cynader, M.S. (1999). Axonal cytoskeleton changes in experimental optic neuritis. Brain Res. 824, 204–217.10.1016/S0006-8993(99)01191-9Search in Google Scholar

Received: 2013-2-17
Accepted: 2013-2-23
Published Online: 2013-04-04
Published in Print: 2013-06-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2013-0003/html
Scroll to top button