Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 23, 2019

Preparation, uranium (VI) absorption and reuseability of marine fungus mycelium modified by the bis-amidoxime-based groups

  • Dianxiong He , Ni Tan EMAIL logo , Xiaomei Luo , Xuechun Yang , Kang Ji , Jingwen Han , Can Chen and Yaqing Liu
From the journal Radiochimica Acta

Abstract

Bis-amidoxime-based claw-like-functionalized marine fungus material (ZZF51-GPTS-DCDA-AM) was prepared for study to absorb the low concentration uranium (VI) from aqueous solution. A series of characterization methods such as SEM, TGA and FT-IR were applied for the functionalized materials before and after modification and adsorption. The experimental results suggested that the amidoxime groups were successfully grafted onto the surface of mycelium powder and provided the special binding sites for the absorption of uranium (VI). In the absorption research, uranium (VI) initial concentration, pH and equilibrium time were optimized as 40 mg L−1, 6.0, and 110 min by L43 orthogonal experiment, respectively, and the maximum absorption capacity of the prepared material was 370.85 mg g−1 under the optimum batch conditions. After five cycling process, the desorption rate and regeneration efficiency of the modified mycelium were found to be 80.29 % and 94.51 %, respectively, which indicated that the material had an adequately high reusability property as a cleanup tool. The well known Langmuir and Freundlich isotherm adsorption model fitting found that the modified materials had both monolayer and bilayer adsorption to uranium (VI) ions. Simultaneously, the pseudo-second-order model was better to illustrated the adsorption kinetics process. The enhanced adsorption capacity of uranium (VI) by the modified fungus materials over raw biomass was mainly owing to the strong chelation of amidoxime groups and uranium (VI) ions.

Funding source: Scientific Research Project of Education Department of Hunan

Award Identifier / Grant number: 17C1359

Funding source: University of South China Innovation Foundation For Postgraduate

Award Identifier / Grant number: 2018KYY050

Funding source: Research Learning and Innovative Experimental Program of South China University

Award Identifier / Grant number: 2018XJXZ329

Funding statement: The authors are fully grateful for the financial support of the Scientific Research Project of Education Department of Hunan (No. 17C1359), the University of South China Innovation Foundation For Postgraduate (2018KYY050), and the Research Learning and Innovative Experimental Program of South China University (2018XJXZ329).

References

1. Saini, K., Singh, P., Bajwa, B. S.: Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India. Appl. Radiat. Isot. 118, 196 (2016).10.1016/j.apradiso.2016.09.014Search in Google Scholar PubMed

2. Yang, S. K., Tan, N., Yan, X. M., Chen, F., Long, W., Lin, Y. C.: Thorium (IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp.# ZZF51. Mar. Pollut. Bull. 74, 213 (2013).10.1016/j.marpolbul.2013.06.055Search in Google Scholar PubMed

3. Mezaguer, M., Kamel, N. el hayet, Lounici, H., Kamel, Z.: Characterization and properties of Pleurotus mutilus fungal biomass as adsorbent of the removal of uranium (VI) from uranium leachate. J. Radioanal. Nucl. Ch. 295, 393 (2013).10.1007/s10967-012-1911-ySearch in Google Scholar

4. Saravanan, D., Gomathi, T., Sudha, P. N.: Sorption studies on heavy metal removal using chitin/bentonite biocomposite. Int. J. Biol. Macromol. 53, 67 (2013).10.1016/j.ijbiomac.2012.11.005Search in Google Scholar PubMed

5. Singh, H., Mishra, S. L., Vijayalakshmi, R.: Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy 73, 63 (2004).10.1016/j.hydromet.2003.08.006Search in Google Scholar

6. Mellah, A., Chegrouche, S., Barkat, M.: The precipitation of ammonium uranyl carbonate (AUC): thermodynamic and kinetic investigations. Hydrometallurgy 85, 163 (2007).10.1016/j.hydromet.2006.08.011Search in Google Scholar

7. Favre-Reguillon, A., Lebuzit, G., Foos, J., Guy, A., Draye, M., Lemaire, M.: Selective concentration of uranium from seawater by nanofiltration. Ind. Eng. Chem. Res. 42, 5900 (2003).10.1021/ie030157aSearch in Google Scholar

8. Bae, S. Y., Southard, G. L., Murray, G. M.: Molecularly imprinted ion exchange resin for purification, preconcentration and determination of UO22+ by spectrophotometry and plasma spectrometry. Anal. Chim. Acta. 397, 173 (1999).10.1016/S0003-2670(99)00402-XSearch in Google Scholar

9. Rao, T. P., Metilda, P., Gladis, J. M.: Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination – an overview. Talanta 68, 1047 (2006).10.1016/j.talanta.2005.07.021Search in Google Scholar PubMed

10. Zhao, Y., Li, J., Zhang, S., Wang, X.: Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U (VI). RSC Adv. 4, 32710 (2014).10.1039/C4RA05128ASearch in Google Scholar

11. Mata, Y. N., Blázquez, M. L., Ballester, A., González, F., Muñoz, J. A.: Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. J. Hazard. Mater. 163, 555 (2009).10.1016/j.jhazmat.2008.07.015Search in Google Scholar PubMed

12. Saini, A. S., Melo, J. S.: Biosorption of uranium by melanin: kinetic, equilibrium and thermodynamic studies. Bioresource Technol. 149, 155 (2013).10.1016/j.biortech.2013.09.034Search in Google Scholar PubMed

13. Shao, D., Li, J., Wang, X.: Poly (amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Sci. China Chem. 57, 1449 (2014).10.1007/s11426-014-5195-7Search in Google Scholar

14. Gao, J. K., Hou, L. A., Zhang, G. H., Gu, P.: Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution. J. Hazard. Mater. 286, 325 (2015).10.1016/j.jhazmat.2014.12.061Search in Google Scholar PubMed

15. Tan, L., Wang, Y., Liu, Q., Wang, J., Jing, X. Y., Liu, L. H., Liu, J. Y., Song, D. L.: Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem. Eng. J. 259, 752 (2015).10.1016/j.cej.2014.08.015Search in Google Scholar

16. Yue, Y., Mayes, R. T., Kim, J., Fulvio, P. F., Sun, X. G., Tsouris, C., Chen, J. H., Brown, S., Dai, S.: Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. Angew. Chem. Int. Edit. 52, 13458 (2013).10.1002/anie.201307825Search in Google Scholar PubMed

17. Li, B.; Sun, Q., Zhang, Y., Abney, C. W., Aguila, B., Lin, W., Ma, S.: Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl. Mater. Inter. 9, 12511 (2017).10.1021/acsami.7b01711Search in Google Scholar PubMed

18. Barkat, M., Nibou, D., Amokrane, S., Chegrouche, S., Mellah, A.: Uranium (VI) adsorption on synthesized 4A and P1 zeolites: equilibrium, kinetic, and thermodynamic studies. CR Chi. 18, 261 (2015).10.1016/j.crci.2014.09.011Search in Google Scholar

19. Khamirchi, R., Hosseini-Bandegharaei, A., Alahabadi, A., Sivamani, S., Rahmani-Sani, A., Shahryari, T., Anastopoulos, I., Miri, M., Tran, H. N.: Adsorption property of Br-PADAP-impregnated multiwall carbon nanotubes towards uranium and its performance in the selective separation and determination of uranium in different environmental samples. Ecotoxicol. Environ. Saf. 150, 136 (2018).10.1016/j.ecoenv.2017.12.039Search in Google Scholar PubMed

20. Manos, M. J., Kanatzidis, M. G.: Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 134, 16441 (2012).10.1021/ja308028nSearch in Google Scholar PubMed

21. Vivero-Escoto, J. L., Carboni, M., Abney, C. W., deKrafft, K. E., Lin, W.: Organo-functionalized mesoporous silicas for efficient uranium extraction. Micropor. Mesopor. Mater. 180, 22 (2013).10.1016/j.micromeso.2013.05.030Search in Google Scholar

22. Gunathilake, C., Górka, J., Dai, S., Jaroniec, M.: Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J. Mater. Chem. A 3, 11650 (2015).10.1039/C5TA02863ASearch in Google Scholar

23. Barber, P. S., Kelley, S. P., Rogers, R. D.: Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via η 2 coordination. RSC Adv. 2, 8526 (2012).10.1039/c2ra21344cSearch in Google Scholar

24. Carboni, M., Abney, C. W., Liu, S., Lin, W.: Highly porous and stable metal–organic frameworks for uranium extraction. Chem. Sci. 4, 2396 (2013).10.1039/c3sc50230aSearch in Google Scholar

25. Anagnostopoulos, V. A., Koutsoukos, P. G., Symeopoulos, B. D.: Removal of U (VI) from aquatic systems, using winery by-products as biosorbents: equilibrium, kinetic, and speciation studies. Water Air Soil Pollut. 226, 107 (2015).10.1007/s11270-015-2379-5Search in Google Scholar

26. Li, X., Li, F., Jin, Y., Jiang, C.: The uptake of uranium by tea wastes investigated by batch, spectroscopic and modeling techniques. J. Mol. Liq. 209, 413 (2015).10.1016/j.molliq.2015.06.014Search in Google Scholar

27. Yi, Z., Yao, J., Chen, H., Wang, F., Yuan, Z., Liu, X.: Uranium biosorption from aqueous solution onto Eichhornia crassipes. J. Environ. Radioact. 154, 43 (2016).10.1016/j.jenvrad.2016.01.012Search in Google Scholar PubMed

28. Ahmed, S. H., El Sheikh, E. M., Morsy, A. M. A.: Potentiality of uranium biosorption from nitric acid solutions using shrimp shells. J. Environ. Radioact. 134, 120 (2014).10.1016/j.jenvrad.2014.03.007Search in Google Scholar PubMed

29. Zhou, L., Wang, Y., Zou, H., Liang, X., Zeng, K., Liu, Z., Adesina, A. A.: Biosorption characteristics of uranium (VI) and thorium (IV) ions from aqueous solution using CaCl 2- modified Giant Kelp biomass. J. Radioanal. Nucl. Ch. 307, 635 (2016).10.1007/s10967-015-4166-6Search in Google Scholar

30. Wang, T., Zheng, X., Wang, X., Lu, X., Shen, Y. Different biosorption mechanisms of Uranium (VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. J. Environ. Radioact. 167, 92 (2017).10.1016/j.jenvrad.2016.11.018Search in Google Scholar PubMed

31. Zhao, C., Liu, J., Tu, H., Li, F., Li, X., Yang, J., Liao, J., Yang, Y., Liu, N., Sun, Q.: Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus. Environ. Sci. Pollut. R. 23, 24846 (2016).10.1007/s11356-016-7722-xSearch in Google Scholar PubMed

32. Javanbakht, V., Alavi, S. A., Zilouei, H.: Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci. Technol. 69, 1775 (2014).10.2166/wst.2013.718Search in Google Scholar PubMed

33. Celik, F., Camas, M., Kyeremeh, K., Sazak Camas, A.: Microbial sorption of uranium using amycolatopsis sp. K47 isolated from uranium deposits. Water Air Soil Pollut. 229, 112 (2018).10.1007/s11270-018-3766-5Search in Google Scholar

34. Yang, H. B., Tan, N., Wu, F. J., Liu, H. J., Sun, M., She, Z. G., Lin, Y. C.: Biosorption of uranium (VI) by a mangrove endophytic fungus Fusarium sp.# ZZF51 from the South China Sea. J. Radioanal. Nucl. Ch. 292, 1011 (2011).10.1007/s10967-011-1552-6Search in Google Scholar PubMed PubMed Central

35. Bayramoglu, G., Akbulut, A., Arica, M. Y.: Study of polyethyleneimine-and amidoxime-functionalized hybrid biomass of Spirulina (Arthrospira) platensis for adsorption of uranium (VI) ion. Environ. Sci. Pollut. R. 22, 17998 (2015).10.1007/s11356-015-4990-9Search in Google Scholar PubMed

36. Chen, F., Tan, N., Long, W., Yang, S. K., She, Z. G., Lin, Y. C.: Enhancement of uranium (VI) biosorption by chemically modified marine-derived mangrove endophytic fungus Fusarium sp.# ZZF51. J. Radioanal. Nucl. Ch. 299, 193 (2014).10.1007/s10967-013-2758-6Search in Google Scholar

37. Zhao, Y., Li, J., Zhao, L., Zhang, S., Huang, Y., Wu, X., Wang, X.: Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U (VI). Chem. Eng. J. 235, 275 (2014).10.1016/j.cej.2013.09.034Search in Google Scholar

38. Xu, C., Wang, J., Yang, T., Chen, X., Liu, X., Ding, X.: Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr. Polym. 121, 79 (2015).10.1016/j.carbpol.2014.12.024Search in Google Scholar PubMed

39. Li, L., Hu, N., Ding, D., Xin, X., Wang, Y., Xue, J., Zhang, H., Tan, Y.: Adsorption and recovery of U (VI) from low concentration uranium solution by amidoxime modified Aspergillus niger. RSC Adv. 5, 65827 (2015).10.1039/C5RA13516HSearch in Google Scholar

40. Mondal, P., Mehta, D., George, S.: Defluoridation studies with synthesized magnesium-incorporated hydroxyapatite and parameter optimization using response surface methodology. Desalin. Water Treat. 57, 27294 (2016).10.1080/19443994.2016.1167628Search in Google Scholar

41. Masoumi, A., Ghaemy, M.: Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime: isotherm and kinetic study. Carbohydr. Polym. 108, 206 (2014).10.1016/j.carbpol.2014.02.083Search in Google Scholar PubMed

42. Kavaklı, P. A., Güven, O.: Removal of concentrated heavy metal ions from aqueous solutions using polymers with enriched amidoxime groups. J. Appl. Polym. Sci. 93, 1705 (2004).10.1002/app.20616Search in Google Scholar

43. Guo, X., Feng, Y., Ma, L., Gao, D., Jing, J., Yu, J., Sun, H., Gong, H., Zhang, Y.: Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl. Surf. Sci. 402, 53 (2017).10.1016/j.apsusc.2017.01.050Search in Google Scholar

44. Yuan, L. Y., Liu, Y. L., Shi, W. Q., Li, Z. J., Lan, J. H., Feng, Y. X., Zhao, Y. L., Yuan, Y. L., Chai, Z. F.: A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. J. Mater. Chem. 22, 17019 (2012).10.1039/c2jm31766dSearch in Google Scholar

45. Maciel, G, M., de, Souza, C. G. M., de, Araújo, C. A. V., de, Bona, E., Haminiuk, C. W. I., Castoldi, R., Bracht, A., Peralta, R. M.: Biosorption of herbicide picloram from aqueous solutions by live and heat-treated biomasses of Ganoderma lucidum (Curtis) P. Karst and Trametes sp. Chem. Eng. J. 215, 331 (2013).10.1016/j.cej.2012.09.127Search in Google Scholar

46. Saini, A. S., Melo, J. S.: Biosorption of uranium by melanin: kinetic, equilibrium and thermodynamic studies. Bioresour. Technol. 149, 155 (2013).10.1016/j.biortech.2013.09.034Search in Google Scholar PubMed

47. Gok, C., Aytas, S.: Biosorption of uranium (VI) from aqueous solution using calcium alginate beads. J. Hazard Mater. 168, 369 (2009).10.1016/j.jhazmat.2009.02.063Search in Google Scholar PubMed

48. Gorman-Lewis, D., Elias, P. E., Fein, J. B.: Adsorption of aqueous uranyl complexes onto Bacillus subtilis cells. Environ. Sci. Technol. 39, 4906 (2005).10.1021/es047957cSearch in Google Scholar PubMed

Received: 2018-09-30
Accepted: 2019-03-15
Published Online: 2019-04-23
Published in Print: 2019-12-18

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2018-3063/html
Scroll to top button