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Abstract
In this paper, we announce the development of Neural Monkey – an open-source neural

machine translation (NMT) and general sequence-to-sequence learning system built over the
TensorFlow machine learning library. The system provides a high-level API tailored for fast
prototyping of complex architectures with multiple sequence encoders and decoders. Models’
overall architecture is specified in easy-to-read configuration files. The long-term goal of the
Neural Monkey project is to create and maintain a growing collection of implementations of
recently proposed components or methods, and therefore it is designed to be easily extensible.
Trained models can be deployed either for batch data processing or as a web service. In the
presented paper, we describe the design of the system and introduce the reader to running
experiments using Neural Monkey.

1. Introduction

Neural machine translation (NMT) recently became a new successful paradigm
in machine translation (Sutskever et al., 2014; Bahdanau et al., 2014). Besides NMT,
sequence-to-sequence (S2S) learning in general proved its usefulness in various other
tasks including building a chatbot (Vinyals and Le, 2015), image captioning (Vinyals
et al., 2015; Xu et al., 2015), or text segmentation and entity recognition (Gillick et al.,
2016).

Neural Monkey is an open-source toolkit written using the TensorFlow machine
learning library (Abadi et al., 2016). It provides a higher level API, such that it should
be enough for the users to be familiar with the models on the equation level, with-
out delving into implementation details. For that reason, we try to use as big abstract
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building blocks as possible. Unlike tfLearn1 or Lasagne,2 our building blocks are not
individual network layers, but more abstract objects like encoders or classifiers. These
objects are parametrized so that their properties (e.g. number and sizes of hidden lay-
ers or dropout probability) can be set from a farther perspective. This design decision
allows us to place the configuration of the experiments away from the actual code
into a separate comprehensive configuration file. This way, users are prevented from
interleaving the configuration with other program logic.

Neural Monkey is still under development and has an ambition to become an ever-
growing collection of recent innovations in NMT and S2S learning in general, which
would allow its users to easily try out the model for their specific tasks and datasets.
With its simple experiment management, we hope that it will be used as a ready-made
easily-extensible toolkit for experiments with machine translation, image captioning,
text classification tasks or scene text recognition. It has already been used for the
submission for the WMT16 automatic post-editing and multimodal translation tasks
(Libovický et al., 2016), linguistic analysis of MT systems (Avramidis et al., 2016).

The current version of the software is available at https://github.com/ufal/
neuralmonkey under the BSD license.

2. Related Work

Most of the deep learning frameworks split the computation into two stages. In the
first stage, the programmer designs the computation symbolically. The symbolic code
which describes a computation graph is then optimized and compiled to efficiently
perform the numeric computation. In the second stage, the program performs the
numerical computation on the compiled computation graph using a supplied input
data.

In Theano (Bergstra et al., 2010), C code is generated from the original Python code
and then it is compiled. One of the problems with this approach is that it is difficult
to track the computation once the code is compiled.

Chainer (Tokui et al., 2015), on the other hand, is written in Python, and therefore,
debugging of the code is easier. In order to match the speed of compiled C code,
Chainer uses fast libraries for numerical computation both on CPUs and GPUs.

TensorFlow (Abadi et al., 2016) stays in between of these approaches. Its building
blocks are implemented in C and are manipulated using Python code. Additionally,
TensorFlow provides tools for greater amount of transparency and offers more con-
venient ways of debugging the computation graphs.

Torch (Collobert et al., 2011) also uses a similar approach, employing a scripting
language that operates over a highly optimized C backend. Unlike the other frame-
works which use Python, Torch uses Lua for the scripts.

1https://github.com/tflearn/tflearn

2https://github.com/Lasagne/Lasagne
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These libraries are basically general purpose tools for linear algebra computations
(although they bring more and more functionality tailored for deep learning) and
writing the models requires typing a lot of service code that deals with preparing the
inputs and outputs of the models. All of these three basic libraries are distributed
under free and commercial-friendly licenses.

For the reasons above, various libraries provide higher levels of abstractions over
the basic libraries. Most of them aim for general-purpose use and do not provide
many features tailored for natural language processing. Among these, there are the
previously mentioned tfLearn and Lasagne, built on top of TensorFlow and Theano,
respectively. Another popular library for Theano, similar to Lasagne, is Blocks (van
Merriënboer et al., 2015). All of these libraries offer a lower level abstraction, operating
directly with layers. Keras (Chollet, 2015) operates with the layers similarly as the other
frameworks. Currently, it provides probably the richest set features both over Theano
and TensorFlow.

A software package similar to Neural Monkey is Nematus (Sennrich et al., 2017).
It is a state-of-the-art research software for NMT. Unlike Neural Monkey, it is written
using Theano and focuses only on single-input and single-output setup and does not
by default support input of non-textual modalities.

Another software package for NMT is OpenNMT (Klein et al., 2017), which is built
on Torch. Similarly to Nematus, it focuses on single-source and single-output models.
Besides that, there is an extension for image-to-text models. Compared to Nematus,
it does not support so many features for NMT such as sub-word units or direct opti-
mization towards BLEU score (Shen et al., 2016).

Unlike Neural Monkey, none of the S2S learning packages above provides basic
experiment management functionality.

3. Problem Conceptualization

This section provides the basic overview on how Neural Monkey conceptualizes
the problem of S2S learning and how the data flows during training and how running
the models looks like.

3.1. Loading and Processing Datasets

Before the models are applied to the data, there is a short pipeline of steps prepar-
ing the data. For that, we introduce the notion of dataset and data series.

A dataset is a collection of named data series. Each data series is a list of data in-
stances of the same type that represents a single kind of input or desired output of a
model. In the simple case of machine translation, there are two data series: a list of
sentences in the source language and a list of sentences in the target language. Fig-
ure 1 captures how a dataset is created from the input data.

The dataset is created in the following steps:
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Figure 1. Creating a dataset in Neural Monkey

1. An input file is read using a reader. Reader can e.g., load a file containing paths
to JPEG images and load them as NumPy arrays, or read tokenized text as a list
of lists (sentences) of string tokens.

2. Series created by the readers can be preprocessed by some series-level prepro-
cessors. An example of such preprocessing is byte-pair encoding (Sennrich et al.,
2016) which loads a list of merges and segments the text accordingly.

3. The final step before creating a dataset is applying dataset-level preprocessors
which can take more series and output a new series.

Currently, there are two implementations of a dataset. An in-memory dataset
which stores all data in the memory, and a lazy dataset which gradually reads the
input files step by step and only stores the batches necessary for the computation in
the memory.

3.2. Training and Running a Model

This section describes the training and running workflow. In general, we try to
separate model parts which provide a declarative description of the model (e.g., equa-
tions for an RNN decoder) and the way the models are run (e.g., run it using a beam
search, sample a random sentence, or get the error derivatives). The main concepts
and their interconnection can be seen in the scheme in Figure 2. It shows how the
model is executed on the data using what we call runners.

Dataset series can be used to create a vocabulary. A vocabulary represents an in-
dexed set of tokens and provides functionality for converting lists of tokenized sen-
tences into matrices of token indices and vice versa. Vocabularies are used by encoders
and decoders for feeding the provided series into the neural network.

The model itself is defined by model parts which categorize into encoders and
decoders. This is where most of the TensorFlow code is located. Encoders are parts
of the model which take some input and compute a representation of it. Decoders
are model parts that produce some outputs. Our definition of encoders and decoders
is more general than in the classical S2S learning. An encoder can be for example a
convolutional network processing an image. The RNN decoder is for us only a special
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RunnersInput data Model outputs

...

Figure 2. Model workflow in Neural Monkey

type of decoder, it can be also a sequence labeler or a simple multilayer perceptron
classifier or regressor.

Decoders are executed using so-called runners. Different runners represent differ-
ent ways of running the model. We might want to get a single best estimation, get an
n-best list or a sample from the model. We might want to use an RNN decoder to get
the decoded sequences or we might be interested in the word alignment obtained by
its attention model. This is all done by employing different runners over the decoders.
The outputs of the runners can be subject to further postprocessing.

In addition to runners, each experiment has to have its trainer. A trainer is a special
case of a runner that actually modifies the parameters of the model. It collects the
objective functions and uses them in an optimizer.

Neural Monkey manages TensorFlow sessions using an object called TensorFlow
manager. Its basic capability is to execute runners on provided datasets. It encapsu-
lates all logic concerning the TensorFlow sessions.

We can demonstrate this rather abstract description on an example of automatic
post-editing of MT output. The model is illustrated in Figure 3. In this case, the
model uses two encoders which are implemented using a bi-directional GRU (Cho
et al., 2014) network. The first encoder is fed with sentences in the source language
and the second one is fed with the machine translation output. A decoder combines
outputs of both the encoders and attends to their hidden states during decoding. A
trainer that follows the decoders computes the error of the decoder outputs given the
desired target text from the train dataset.

4. Configuration

The experiments are described using configuration files. They contain a complete
specification of the network architecture, preprocessing and postprocessing of the
data, the training and validation data, all meta-parameters of the training, and metrics
used for model evaluation. The configuration files are the main tool of Neural Mon-
key’s experiment management. The same configuration can be used after training to
run the trained model.
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<s>

++++

Figure 3. Scheme of the architecture for the training process of an automatic post-editing
task

The following sections explain the main ideas how the configuration works.

4.1. Syntax

The configuration files are based on the syntax of INI files.3 Neural Monkey INI
files contain key-value pairs, delimited by an equal sign (=) with no spaces around.
The key-value pairs are grouped into sections. (Neural Monkey requires all pairs to
belong to a section.)

Every section starts with its header which consists of the section name in square
brackets. Everything below the header is considered to be a part of the section. Com-
ments can appear on their own line, prefixed either with a hash sign (#) or a semicolon
(;) and possibly indented. The configuration introduces several additional constructs
for the values. These can be atomic values, and compound values.

The supported atomic values are:
• booleans: literals True and False;
• integers: strings that could be interpreted as integers by Python (e.g., 1, 002);
• floats: strings that could be interpreted as floats by Python (e.g., 1.0, .123, 2.,

2.34e-12);
• strings: string literals in quotes (e.g., "walrus", "5");
• section references: string literals in angle brackets (e.g., <encoder>), sections are

later interpreted as Python objects;
• Python names: strings without quotes which are neither booleans, integers and

floats, nor section references (e.g., neuralmonkey.encoders.SentenceEncoder).

On top of that, there are two compound types syntax from Python:
• lists: comma-separated in squared brackets (e.g., [1, 2, 3]);

3https://en.wikipedia.org/wiki/INI_file
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• tuples: comma-separated in round brackets (e.g., ("target", <ter>)).

4.2. Interpretation

Each configuration file contains a [main] section which is interpreted as a dictio-
nary having keys specified in the section and values which are results of interpretation
of the right-hand sides.

Both the atomic and compound types taken from Python (i.e., everything except
the section references) are interpreted as their Python counterparts.

Section references are interpreted as references to objects constructed while inter-
preting the referenced section. (So, if <session_manager> is on the right-hand side of
a variable assignment and section [session_manager] is located elsewhere in the file,
Neural Monkey will construct a Python object based on the key-value pairs in section
[session_manager] and use it as a value for the variable.)

Each section, except for the [main] section, needs to contain the key class with a
value of Python name which is a callable (e.g., a class constructor or a function). The
other keys are used as named arguments of the callable.

4.3. Content of the Configuration

The configuration needs to specify what is needed during the model runtime (the
model architecture, preprocessing and postprocessing of the data) and the configu-
ration for training (loss computation, mini-batch sizes etc.). Since the configuration
refers directly to the Python code, there is no need for separate user and programmer
documentation. The documentation of the configuration elements can be found in the
API documentation of the respective modules of the package. A few self-explanatory
examples of the configuration can be seen in Figures 4, 5, and 6.

5. Usage

Neural Monkey is written in Python 3.5. Because of the abstraction over computing
devices that TensorFlow offers, the models can be run both on CPU and GPU. Neural
Monkey has only a few requirements (besides TensorFlow), all of them can be easily
installed with pip.

There are four main scripts that are used to run Neural Monkey. They are located
in the bin directory of the source repository:

• neuralmonkey-train – The main script used for training a model. It takes one
argument, which is the location of the configuration file for the training. Each
experiment has its own directory which contains a copy of the configuration file,
the current git diff and commit ID, all experiment logs, TensorBoard visualiza-
tion files, and the saved model.

11



PBML 107 APRIL 2017

[encoder]
class=(…).SentenceEncoder
name="encoder-1"
rnn_size=256
max_input_len=50
embedding_size=200
dropout_keep_prob=0.5
attention_type=(…).Attention
data_id="source"
vocabulary=<encoder_vocabulary>

[decoder]
class=(…).Decoder
name="decoder"
encoders=[<encoder>]
rnn_size=256
max_output_len=50
embedding_size=256
use_attention=True
dropout_keep_prob=0.5
data_id="target"
vocabulary=<decoder_vocabulary>

[trainer]
class=(…).CrossEntropyTrainer
decoders=[<decoder>]
l2_regularization=1.0e-8

[runner]
class=(…).GreedyRunner
decoder=<decoder>
output_series="target"

Figure 4. An example of construction of the encoder, decoder, trainer and runner objects
by direct calls of their class constructors.

[train_data]
class=dataset.load_dataset_from_files
s_source="tests/data/train.tc.en"
s_target="tests/data/train.tc.de"
s_target_out="train.translated.de"

The dataset.load_dataset_from_files func-
tion is called as the dataset initializer. All ar-
guments starting with s_ correspond to named
data series (source and target) and provide
paths to files containing the data. If a data se-
ries argument ends with _out, the path is inter-
preted as the output file for the series.

Figure 5. Example of a dataset. The <val_data> object is created analogically.

[encoder_vocabulary]
class=vocabulary.from_dataset
datasets=[<train_data>]
series_ids=[source]
max_size=25000
save_file="enc_vocab.pkl"

This snippet shows how a vocabulary is cre-
ated from a dataset. The function simply it-
erates through the dataset series source, com-
putes the tokens frequency and keeps 25,000
most frequent tokens. After the vocabulary is
created, it is stored in the specified file.

Figure 6. Example of creating vocabulary. The <decoder_vocabulary> object is created
analogically.
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• neuralmonkey-run – This script is used for loading a trained model and its exe-
cution on a dataset. It requires the location of the original configuration file and
another configuration file that specifies the location of the dataset files.

• neuralmonkey-server – A trained model can be run as a web service. It accepts
dictionaries of data series for encoders and returns the series produced by de-
coders in a JSON format with a REST API.

• neuralmonkey-logbook – The experiment logs and configurations can be
browsed using a small web service Neural Monkey LogBook. It is called with
a --logdir argument, which points to a directory with experiments. When the
directory has sub-directories, they are regarded as separate experiments and are
all shown in the LogBook.

6. Implemented Features

This section provides a short overview on features that have been already imple-
mented in Neural Monkey:

• standard attentive S2S learning with a decoder capable of working with multiple
encoders with GRU or LSTM networks;

• sequence labeling and sequence classification and regression;
• pre-trained ImageNet network for experiments with image captioning and mul-

timodal machine translation (with optional model fine-tuning);
• custom deep convolutional networks for image processing;
• beam search and model ensembling;
• conditional gated recurrent units for decoder (Firat and Cho, 2016);
• byte-pair encoding for translation with sub-word units (Sennrich et al., 2016).
The possibility to use multiple decoders at one moment allows to easily build ar-

chitectures for multi-task learning, like joint training of POS tagging on the source
language together with machine translation.

Other advanced features like layer normalization or various learning methods op-
timizing the outputs directly towards BLEU score (Shen et al., 2016; Rennie et al., 2016)
are expected to be added in the future.

7. Benchmarking

In order to validate the Neural Monkey’s performance, we a sanity check eval-
uation on the architecture introduced by Bahdanau et al. (2014) which became the
standard baseline model in NMT research.4 Following Bahdanau et al. (2014), we
train and evaluate our models using data provided for the WMT14 news task5 from

4Reference implementation using Theano can be found here: https://github.com/lisa-groundhog/
GroundHog

5Task details can be found here: http://www.statmt.org/wmt14/translation-task.html
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model BLEU score epochs
Bahdanau et al. (2014) – neural 26.75 2.2
Bahdanau et al. (2014) – neural 28.45 6.0
SMT 33.30 —
Neural Monkey – greedy decoding 25.08 1.2
Neural Monkey + CGRU – greedy decoding 27.35 1.6

Table 1. Results achieved by Neural Monkey on the WMT14 News Task French to English
dataset with the number epochs the training was running.

English to French. We use the same dataset as Bahdanau et al. (2014) for both training
and evaluation of the models.

The encoder is a bi-directional GRU network (Cho et al., 2014) with 500 hidden
units in each direction, the decoder is an RNN decoder with 1,000 units in the hidden
layer. Unlike the original model, we do not use the max-out projection, but a simple
‘tanh’ projection. Whereas the original paper used Adadelta (Zeiler, 2012) optimizer,
we used Adam (Kingma and Ba, 2014) in our experiments. The comparison of the
models is shown in Table 1.

We have also experimented with conditional GRU (Firat and Cho, 2016) units
which show the expected improvement on top of the baseline model. Another eas-
ily achievable improvement using Neural Monkey could be done with sub-word
units (Sennrich et al., 2016) to deal with the out-of-vocabulary tokens.

8. Conclusions

We presented Neural Monkey – a new toolkit for sequence learning built using Ten-
sorFlow. It is aimed at gathering implementations of recent deep learning methods in
various fields, primarily focused on NMT. Compared to other toolkits, it provides a
higher level of abstraction, along with a simple configuration mechanism that allows
for fast prototyping and reusing trained models and experiment management.

In the future, more features will be added. We also hope for community feedback
from using the toolkit in practice that will help us to reevaluate the design decisions
we have made. For the information on the recent development, we refer the reader to
the online documentation. 6
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