Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2022

Mechanical and wear behaviour of PEEK, PTFE and PU: review and experimental study

  • Elango Natarajan EMAIL logo , M. S. Santhosh , Kalaimani Markandan , R. Sasikumar , N. Saravanakumar and A. Anto Dilip

Abstract

Soft polymers such as polyether ether ketone (PEEK), polyurethane (PU) and polytetrafluoroethylene (PTFE) have gained significant research interest in the last few decades owing to their excellent material properties which can be harnessed to meet the demands of various applications such as biomedical implants and accessories, insulation panels to cooking utensils, inner coating material for non-stick cookware etc. In the present study, we provide a comprehensive review on the mechanical and tribological behaviour of PEEK, PU and PTFE polymers. Samples of these materials were also fabricated and the experimentally obtained tensile strength, flexural strength, wear rate and coefficient of frictions were ascertained with values reported in literature. It is highlighted that coefficient of friction of polymers were highly dependent on the surface texture of the polymer’s surface; where an uneven surface exhibited higher coefficient of friction. Perspectives for future progress are also highlighted in this paper.


Corresponding author: Elango Natarajan, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Xu, J., Huang, X., Davim, J. P., Ji, M., Chen, M. On the machining behavior of carbon fiber reinforced polyimide and PEEK thermoplastic composites. Polym. Compos. 2020, 41, 3649–3663; https://doi.org/10.1002/pc.25663.Search in Google Scholar

2. Zanjanijam, A. R., Major, I., Lyons, J. G., Lafont, U., Devine, D. M. Fused filament fabrication of peek: a review of process-structure-property relationships. Polymers 2020, 12, 1665; https://doi.org/10.3390/polym12081665.Search in Google Scholar

3. Honigmann, P., Sharma, N., Okolo, B., Popp, U., Msallem, B., Thieringer, F. M. Patient-specific surgical implants made of 3D printed PEEK: material, technology, and scope of surgical application. BioMed Res. Int. 2018, 2018, 4520636; https://doi.org/10.1155/2018/4520636.Search in Google Scholar

4. Elhattab, K., Sikder, P., Walker, J. M., Bottino, M. C., Bhaduri, S. B. Fabrication and evaluation of 3-D printed PEEK scaffolds containing macropores by design. Mater. Lett. 2020, 263, 127227; https://doi.org/10.1016/j.matlet.2019.127227.Search in Google Scholar

5. de Leon, A. C. C., da Silva, Í. G., Pangilinan, K. D., Chen, Q., Caldona, E. B., Advincula, R. C. High performance polymers for oil and gas applications. React. Funct. Polym. 2021, 162.10.1016/j.reactfunctpolym.2021.104878Search in Google Scholar

6. Thiruchitrambalam, M., Bubesh Kumar, D., Shanmugam, D., Jawaid, M. A. A review on PEEK composites – manufacturing methods, properties and applications. Mater. Today Proc. 2020, 33, 1085–1092; https://doi.org/10.1016/j.matpr.2020.07.124.Search in Google Scholar

7. Demharter, A. Polyurethane rigid foam, a proven thermal insulating material for applications between +130°C and −196°C. Cryogenics 1998, 38, 113–117; https://doi.org/10.1016/s0011-2275(97)00120-3.Search in Google Scholar

8. Zhao, Z., Guo, Q., Qian, J., Pan, G. Mechanical properties and tribological behaviour of polyurethane elastomer reinforced with CaCO3 nanoparticles. Polym. Polym. Compos. 2012, 20, 575–580; https://doi.org/10.1177/096739111202000701.Search in Google Scholar

9. Gama, N. V., Ferreira, A., Barros-Timmons, A. Polyurethane foams: past, present, and future. Materials 2018, 11, 1841; https://doi.org/10.3390/ma11101841.Search in Google Scholar PubMed PubMed Central

10. Akindoyo, J. O., Beg, M. D. H., Ghazali, S., Islam, M. R., Jeyaratnam, N., Yuvaraj, A. R. Polyurethane types, synthesis and applications – a review. RSC Adv. 2016, 6, 114453–114482; https://doi.org/10.1039/c6ra14525f.Search in Google Scholar

11. Chattopadhyay, D. K., Raju, K. V. S. N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 2007, 32, 352–418; https://doi.org/10.1016/j.progpolymsci.2006.05.003.Search in Google Scholar

12. Elango, N., Faudzi, A. A. M. A review article: investigations on soft materials for soft robot manipulations. Int. J. Adv. Manuf. Technol. 2015, 80, 1027–1037; https://doi.org/10.1007/s00170-015-7085-3.Search in Google Scholar

13. Lehmann, D., Hupfer, B., Lappan, U., Pompe, G., Häußler, L., Jehnichen, D., Janke, A., Geißler, U., Reinhardt, R., Lunkwitz, K., Franke, R., Kunze, K. New PTFE-polyamide compounds. Des. Monomers Polym. 2002, 5, 317–324; https://doi.org/10.1163/156855502760158006.Search in Google Scholar

14. Dhanumalayan, E., Joshi, G. M. Performance properties and applications of polytetrafluoroethylene (PTFE)—a review. Adv. Compos. Hybrid Mater. 2018, 1, 247–268; https://doi.org/10.1007/s42114-018-0023-8.Search in Google Scholar

15. Haworth, B., Gilbert, M., Myers, D. J. B. Melt-state shear flow and elasticity of a thermoplastic fluorosulphonated-PTFE copolymer. J. Mater. Sci. 2005, i, 955–964; https://doi.org/10.1007/s10853-005-6514-3.Search in Google Scholar

16. Sajid, M., Ilyas, M. PTFE-coated non-stick cookware and toxicity concerns: a perspective. Environ. Sci. Pollut. Res. 2017, 24, 23436–23440; https://doi.org/10.1007/s11356-017-0095-y.Search in Google Scholar PubMed

17. Natarajan, E., Kaviarasan, V., Lim, W. H., Tiang, S. S., Parasuraman, S., Elango, S. Non-dominated sorting modified teaching–learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE). J. Intell. Manuf. 2020, 31, 911–935; https://doi.org/10.1007/s10845-019-01486-9.Search in Google Scholar

18. Ivan, V. P., Orti, V., Cuisinier, F., Yachouh, J. Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med. 2016, 27; https://doi.org/10.1007/s10856-016-5731-4.Search in Google Scholar PubMed

19. Markandan, K., Kanaujia, P. K., Abhineet, J. P., Yap, X. Y., Gan, C. L., Lai, C. Q. Improvements in the modulus and strength of multi-dimensional hybrid composites through synergistic reinforcement between 1D fiber and 0D particle fillers. J. Mater. Sci. 2021, 56, 15162–15179; https://doi.org/10.1007/s10853-021-06277-3.Search in Google Scholar

20. Khalili, P., Tshai, K. Y., Kong, I. Natural fiber reinforced expandable graphite filled composites: evaluation of the flame retardancy, thermal and mechanical performances. Compos. Part A Appl. Sci. Manuf. 2017, 100, 194–205; https://doi.org/10.1016/j.compositesa.2017.05.015.Search in Google Scholar

21. Khalili, P., Tshai, K. Y., Hui, D., Kong, I. Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Compos. B Eng. 2017, 114, 101–110; https://doi.org/10.1016/j.compositesb.2017.01.049.Search in Google Scholar

22. Elango, N., Gupta, N. S., Jiun, Y. L., Golshahr, A. The effect of high loaded multiwall carbon nanotubes in natural rubber and their nonlinear material constants. J. Nanomater. 2017, 2017, https://doi.org/10.1155/2017/6193961.Search in Google Scholar

23. Lazar, P. J. L., Sengottuvelu, R., Natarajan, E. Assessments of secondary reinforcement of epoxy matrix-glass fibre composite laminates through nanosilica (SiO2). Materials 2018, 11, 2186; https://doi.org/10.3390/ma11112186.Search in Google Scholar PubMed PubMed Central

24. Prince Jeya Lal, L., Ramesh, S., Parasuraman, S., Natarajan, E., Elamvazuthi, I. Compression after impact behaviour and failure analysis of nanosilica-toughened thin epoxy/gfrp composite laminates. Materials 2019, 12, 3057; https://doi.org/10.3390/ma12193057.Search in Google Scholar PubMed PubMed Central

25. Dörr, D., Gergely, R., Ivanov, S., Kärger, L., Henning, F., Hrymak, A. On the applicability of thermoforming characterization and simulation approaches to glass mat thermoplastic composites. Procedia Manuf. 2020, 47, 118–125.10.1016/j.promfg.2020.04.148Search in Google Scholar

26. Elango, N., Faudzi, A. A. M., Hassan, A., Rusydi, M. R. M. Experimental investigations of skin-like material and computation of its material properties. Int. J. Precis. Eng. Manuf. 2014, 15, 1909–1914; https://doi.org/10.1007/s12541-014-0545-0.Search in Google Scholar

27. Liou, A. C., Chen, R. H. Injection molding of polymer micro- and sub-micron structures with high-aspect ratios. Int. J. Adv. Manuf. Technol. 2006, 28, 1097–1103; https://doi.org/10.1007/s00170-004-2455-2.Search in Google Scholar

28. Maghsoudi, K., Jafari, R., Momen, G., Farzaneh, M. Micro-nanostructured polymer surfaces using injection molding: a review. Mater. Today Commun. 2017, 13, 126–143; https://doi.org/10.1016/j.mtcomm.2017.09.013.Search in Google Scholar

29. Hung, K. C., Tseng, C. S., Hsu, S. H. Synthesis and 3D Printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv. Healthc. Mater. 2014, 3, 1578–1587; https://doi.org/10.1002/adhm.201400018.Search in Google Scholar PubMed

30. Peng, S., Li, Y., Wu, L., Zhong, J., Weng, Z., Zheng, L., Yang, Z., Miao, J. T. 3D printing mechanically robust and transparent polyurethane elastomers for stretchable electronic sensors. ACS Appl. Mater. Interfaces 2020, 12, 6479–6488; https://doi.org/10.1021/acsami.9b20631.Search in Google Scholar PubMed

31. Valentan, B., Kadivnik, Ž., Brajlih, T., Anderson, A., Drstvenšek, I. Processing poly(ether etherketone) on a 3d printer for thermoplastic modelling. Mater. Tehnol. 2013, 47, 715–721.Search in Google Scholar

32. Haleem, A., Javaid, M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: an overview. Clin. Epidemiol. Glob. Heal. 2019, 7, 571–577; https://doi.org/10.1016/j.cegh.2019.01.003.Search in Google Scholar

33. Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., Zhao, J. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 2015, 8, 5834–5846; https://doi.org/10.3390/ma8095271.Search in Google Scholar PubMed PubMed Central

34. Ding, S., Zou, B., Wang, P., Ding, H. Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym. Test. 2019, 78, 105948; https://doi.org/10.1016/j.polymertesting.2019.105948.Search in Google Scholar

35. Jiang, Z., Erol, O., Chatterjee, D., Xu, W., Hibino, N., Romer, L. H., Kang, S. H., Gracias, D. H. Direct ink writing of poly(tetrafluoroethylene) (PTFE) with tunable mechanical properties. ACS Appl. Mater. Interfaces 2019, 11, 28289–28295; https://doi.org/10.1021/acsami.9b07279.Search in Google Scholar PubMed PubMed Central

36. Velu, R., Vaheed, N., Ramachandran, M. K., Raspall, F. Correction to Experimental investigation of robotic 3D printing of high-performance thermoplastics (PEEK): a critical perspective to support automated fibre placement process. Int. J. Adv. Manuf. Technol. 2020, 108, 1027. 108; https://doi.org/10.1007/s00170-019-04763-2.Search in Google Scholar

37. Yang, C., Tian, X., Li, D., Cao, Y., Zhao, F., Shi, C. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J. Mater. Process. Technol. 2017, 248, 1–7; https://doi.org/10.1016/j.jmatprotec.2017.04.027.Search in Google Scholar

38. Rahman, K. M., Letcher, T., Reese, R. Mechanical properties of additively manufactured peek components using fused filament fabrication. ASME Int. Mech. Eng. Congr. Expo. Proc. 2015, 2A, 1–11; https://doi.org/10.1115/imece2015-52209.Search in Google Scholar

39. Muhsin, S. A., Hatton, P. V., Johnson, A., Sereno, N., Wood, D. J. Determination of polyetheretherketone (PEEK) mechanical properties as a denture material. Saudi Dent. J. 2019, 31, 382–391; https://doi.org/10.1016/j.sdentj.2019.03.005.Search in Google Scholar PubMed PubMed Central

40. Li, X., Yu, R., He, Y., Zhang, Y., Yang, X., Zhao, X., Huang, W. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Lett. 2019, 8, 1511–1516; https://doi.org/10.1021/acsmacrolett.9b00766.Search in Google Scholar PubMed

41. Haryńska, A., Kucinska-Lipka, J., Sulowska, A., Gubanska, I., Kostrzewa, M., Janik, H. Medical-grade PCL based polyurethane system for FDM 3D printing-characterization and fabrication. Materials 2019, 12, 887; https://doi.org/10.3390/ma12060887.Search in Google Scholar PubMed PubMed Central

42. Hu, S., Shou, T., Guo, M., Wang, R., Wang, J., Tian, H., Qin, X., Zhao, X., Zhang, L. Fabrication of new thermoplastic polyurethane elastomers with high heat resistance for 3D printing derived from 3,3-dimethyl-4,4′-diphenyl diisocyanate. Ind. Eng. Chem. Res. 2020, 59, 10476–10482; https://doi.org/10.1021/acs.iecr.0c01101.Search in Google Scholar

43. Xiong, J., Zheng, Z., Jiang, H., Ye, S., Wang, X. Reinforcement of polyurethane composites with an organically modified montmorillonite. Compos Part A Appl. Sci. Manuf. 2007, 38, 132–137; https://doi.org/10.1016/j.compositesa.2006.01.014.Search in Google Scholar

44. Seydibeyoǧlu, M. Ö., Misra, M., Mohanty, A., Blaker, J. J., Lee, K. Y., Bismarck, A., Kazemizadeh, M. Green polyurethane nanocomposites from soy polyol and bacterial cellulose. J. Mater. Sci. 2013, 48, 2167–2175.10.1007/s10853-012-6992-zSearch in Google Scholar

45. Wondu, E., Lule, Z., Kim, J. Thermal conductivity and mechanical properties of thermoplastic polyurethane-/silane-modified Al2O3 composite fabricated via melt compounding. Polymers 2019, 11, 1103; https://doi.org/10.3390/polym11071103.Search in Google Scholar PubMed PubMed Central

46. Shokry, S. A., El Morsi, A. K., Sabaa, M. S., Mohamed, R. R., El Sorogy, H. E. Synthesis and characterization of polyurethane based on hydroxyl terminated polybutadiene and reinforced by carbon nanotubes. Egypt J. Pet. 2015, 24, 145–154; https://doi.org/10.1016/j.ejpe.2015.05.008.Search in Google Scholar

47. Luo, S., Gao, L., Guo, W. Effect of incorporation of lignin as bio-polyol on the performance of rigid lightweight wood–polyurethane composite foams. J. Wood Sci. 2020, 66.10.1186/s10086-020-01872-5Search in Google Scholar

48. Barszczewska-Rybarek, I., Jaszcz, K., Chladek, G., Grabowska, P., Okseniuk, A., Szpot, M., Zawadzka, M., Sokolowska, A., Tarkiewicz, A. E. Characterization of changes in structural, physicochemical and mechanical properties of rigid polyurethane building insulation after thermal aging in air and seawater. Polym. Bull. 2021; https://doi.org/10.1007/s00289-021-03632-x.Search in Google Scholar

49. Gaaz, T. S., Ansari, M. N. M., Shanks, R. A., Khong, I. Mechanical studies on polyurethane (PU) -starch nanocomposites. In Advances in Polymeric Materials (APM–2014); Patia: India, 2014.Search in Google Scholar

50. Rudresh, B. M., Ravikumar, B. N. Effect of short glass fiber loading on the mechanical behaviour of PA66/PTFE blend composites. Trans. Indian Inst. Met. 2017, 70, 1285–1294; https://doi.org/10.1007/s12666-016-0925-5.Search in Google Scholar

51. Liu, P., Lu, R., Huang, T., Cong, P., Jiang, S., Li, T. Tensile and tribological properties of polytetrafluroethylene homocomposites. Wear 2012, 289, 65–72; https://doi.org/10.1016/j.wear.2012.04.013.Search in Google Scholar

52. Gamini, S., Vasu, V., Bose, S. Tube-like natural halloysite/poly(tetrafluoroethylene) nanocomposites: simultaneous enhancement in thermal and mechanical properties. Mater. Res. Express 2017, 4, 045301; https://doi.org/10.1088/2053-1591/aa68b6.Search in Google Scholar

53. Kaplan, Y. Role of reinforcement materials on mechanical and tribological properties of PTFE composites. Polymers 2020, 44, 436–444; https://doi.org/10.7317/pk.2020.44.4.436.Search in Google Scholar

54. Zhong, Y., Feng, H., Fu, D., Zhou, P. Application of fiber reinforced PTFE composites in the field of vibration reduction. DEStech Trans. Eng. Technol. Res. 2019, 250–253; https://doi.org/10.12783/dtetr/eeec2018/26883.Search in Google Scholar

55. Venkatesh, N., Hanumantharaju, H. G., Hemanth, B. Investigation on peek and polyurethane for strength used in articulating surface of knee implants. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2016, V, 24–29.Search in Google Scholar

56. Chen, S., Wang, Q. Preparation, tensile, damping and thermal properties of polyurethanes based on various structural polymer polyols: effects of composition and isocyanate index. J. Polym. Res. 2012, 19, 1–7; https://doi.org/10.1007/s10965-012-9994-2.Search in Google Scholar

57. Giannoukos, K., Salonitis, K. Study of the mechanism of friction on functionally active tribological Polyvinyl Chloride (PVC) – aggregate composite surfaces. Tribol. Int. 2020, 141, 105906; https://doi.org/10.1016/j.triboint.2019.105906.Search in Google Scholar

58. Li, D. X., Deng, X., Wang, J., Yang, J., Li, X. Mechanical and tribological properties of polyamide 6-polyurethane block copolymer reinforced with short glass fibers. Wear 2010, 269, 262–268; https://doi.org/10.1016/j.wear.2010.04.004.Search in Google Scholar

59. Elleuch, R., Elleuch, K., Salah, B., Zahouani, H. Tribological behavior of thermoplastic polyurethane elastomers. Mater. Des. 2007, 28, 824–830; https://doi.org/10.1016/j.matdes.2005.11.004.Search in Google Scholar

60. Sato, S., Yamaguchi, T., Shibata, K., Nishi, T., Moriyasu, K., Harano, K., Hokkirigawa, K. Dry sliding friction and Wear behavior of thermoplastic polyurethane against abrasive paper. Biotribology 2020, 23, 100130; https://doi.org/10.1016/j.biotri.2020.100130.Search in Google Scholar

61. Mo, M., Zhao, W., Chen, Z., Yu, Q., Zeng, Z., Wu, X., Xue, Q. Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets. RSC Adv. 2015, 5, 56486–56497; https://doi.org/10.1039/c5ra10494g.Search in Google Scholar

62. Burris, D. L., Sawyer, W. G. A low friction and ultra low wear rate PEEK/PTFE composite. Wear 2006, 261, 410–418; https://doi.org/10.1016/j.wear.2005.12.016.Search in Google Scholar

63. Bijwe, J., Sen, S., Ghosh, A. Influence of PTFE content in PEEK-PTFE blends on mechanical properties and tribo-performance in various wear modes. Wear 2005, 258, 1536–1542; https://doi.org/10.1016/j.wear.2004.10.008.Search in Google Scholar

64. McElwain, S. E., Blanchet, T. A., Schadler, L. S., Sawyer, W. G. Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nanocomposites. Tribol. Trans. 2008, 51, 247–253; https://doi.org/10.1080/10402000701730494.Search in Google Scholar

65. Chen, W. X., Li, F., Han, G., Xia, J. B., Wang, L. Y., Tu, J. P., Xu, Z. D. Tribological behavior of carbon-nanotube-filled PTFE composites. Tribol. Lett. 2003, 15, 275–278; https://doi.org/10.1023/a:1024869305259.10.1023/A:1024869305259Search in Google Scholar

66. Li, F., Hu, K., lin, Li. J., yuan, Zhao. B. The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene. Wear 2001, 249, 877–882; https://doi.org/10.1016/s0043-1648(01)00816-x.Search in Google Scholar

67. Sawyer, W. G., Freudenberg, K. D., Bhimaraj, P., Schadler, L. S. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 2003, 254, 573–580; https://doi.org/10.1016/s0043-1648(03)00252-7.Search in Google Scholar

68. Blanchet, T. A., Kennedy, F. E. Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 1992, 153, 229–243; https://doi.org/10.1016/0043-1648(92)90271-9.Search in Google Scholar

69. Qihua, W., Jinfen, X., Weichang, S., Weimin, L. An investigation of the friction and wear properties of nanometer Si3N4 filled PEEK. Wear 1996, 196, 82–86.10.1016/0043-1648(95)06866-XSearch in Google Scholar

70. Zhang, Z., Breidt, C., Chang, L., Friedrich, K. Wear of PEEK composites related to their mechanical performances. Tribol. Int. 2004, 37, 271–277; https://doi.org/10.1016/j.triboint.2003.09.005.Search in Google Scholar

71. Zhang, G., Liao, H., Li, H., Mateus, C., Bordes, J. M., Coddet, C. On dry sliding friction and wear behaviour of PEEK and PEEK/SiC-composite coatings. Wear 2006, 260, 594–600; https://doi.org/10.1016/j.wear.2005.03.017.Search in Google Scholar

Received: 2021-11-09
Accepted: 2022-01-22
Published Online: 2022-03-09
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2021-0325/html
Scroll to top button