Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 20, 2022

Effects and mechanism of filler content on thermal conductivity of composites: a case study on plasticized polyvinyl chloride/graphite composites

  • Han Zhang , Zhangbin Yang , Keshun Su , Wenxin Huang and Jun Zhang EMAIL logo

Abstract

Thermally conductive polymer composites that retain mechanics and processing properties have attracted significant attention because of promising high thermal conductivity. Herein, plasticized polyvinyl chloride (P-PVC)/graphite composites were successfully prepared via melt blending. Following the addition of graphite rising from 0 to 300 phr, the thermal conductivity of P-PVC/graphite composites increases from 0.18 to 3.01 W m−1 K−1. The thermal conductivity of P-PVC/graphite composites with 300 phr graphite is 17 times that of the P-PVC matrix. P-PVC/graphite composites with high thermal conductivity have excellent performance in thermal management for LEDs. Therefore, the high thermal conductivity allows for the LED’s temperature to drop 44%, compared with the P-PVC matrix, at 1.5 V. The notably cooling effect provides the ideas for the future application of the P-PVC/graphite composites in the thermal management for electronic components.


Corresponding author: Jun Zhang, Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; and Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hameed, N., Sreekumar, P. A., Francis, B., Yang, W., Thomas, S. Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos. Appl. Sci. Manuf. 2007, 38, 2422–2432. https://doi.org/10.1016/j.compositesa.2007.08.009.Search in Google Scholar

2. Zhang, Y., Heo, Y., Son, Y., In, I., An, K., Kim, B., Park, S. Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 2019, 142, 445–460; https://doi.org/10.1016/j.carbon.2018.10.077.Search in Google Scholar

3. Parrott, J. E. Heat-conduction mechanisms in semiconducting materials. Rev. Int. Hautes Temp. 1979, 16, 393–403.Search in Google Scholar

4. Magomedov, Y. B., Agaev, S. A., Alieva, K. O. Heat-conduction mechanism of Tlsbs2 and Tlsbse2 in solid and liquid-state. Fiz Tverd Tela+. 1987, 29, 1607–1608.Search in Google Scholar

5. Wu, H., Chen, K., Li, Y., Ren, C., Sun, Y., Huang, C. Fabrication of natural flake graphite/ceramic composite parts with low thermal conductivity and high strength by selective laser sintering. Appl. Sci. 2020, 10, 1314; https://doi.org/10.3390/app10041314.Search in Google Scholar

6. Jiang, D. P., Zhu, X. M., Yu, J. K. Enhanced thermal conductivity and bending strength of graphite flakes/aluminum composites via graphite surface modification. J. Wuhan Univ. Technol. 2020, 35, 9–15. https://doi.org/10.1007/s11595-020-2220-x.Search in Google Scholar

7. Liu, Q., He, Z., Cheng, J., Chen, Y., Wang, F., Lv, Z., Qi, J. Theoretical and predictive modeling of interfacial thermal conductance and thermal conductivity in graphite flake/Al composites. Compos. Interfac. 2021, 28, 101–114; https://doi.org/10.1080/09276440.2020.1726135.Search in Google Scholar

8. Machida, Y., Matsumoto, N., Isono, T., Behnia, K. Phonon hydrodynamics and ultrahigh-room-temperature thermal conductivity in thin graphite. Science 2020, 367, 309–312. https://doi.org/10.1126/science.aaz8043.Search in Google Scholar PubMed

9. Ahmad, N., Kausar, A., Muhammad, B. Perspectives on polyvinyl chloride and carbon nanofiller composite: a review. Polym.Plast. Technol. 2016, 55, 1076–1098. https://doi.org/10.1080/03602559.2016.1163587.Search in Google Scholar

10. Wang, Z. M., Cao, Y. Y., Pan, D. C., Hu, S. Vertically aligned and interconnected graphite and graphene oxide networks leading to enhanced thermal conductivity of polymer composites. Polymers-Basel 2020, 12, 1121; https://doi.org/10.3390/polym12051121.Search in Google Scholar PubMed PubMed Central

11. Sohn, Y., Han, T., Han, J. H. Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coefficient of thermal expansion of graphite/copper composites. Carbon 2019, 149, 152–164. https://doi.org/10.1016/j.carbon.2019.04.055.Search in Google Scholar

12. Khan, Z. U., Kausar, A., Zhang, D., Shi, L., Ullah, H., Khan, W. U. Buckypaper of polyvinyl chloride/p-phenylenediamine modified graphite and PVC/graphite via resin infiltration technique. Polym. Compos. 2018, 39, 4176–4187; https://doi.org/10.1002/pc.24487.Search in Google Scholar

13. El Nazer, H. A., Elgohary, E. A., Rabie, S. T. Photostability. thermal and mechanical properties of poly(vinyl chloride)/novel acrylate terpolymer blend. J. Vinyl Addit. Technol. 2019, 25, E55–E62. https://doi.org/10.1002/vnl.21667.Search in Google Scholar

14. Fang, H., Liu, Y., Li, G., Liu, Y., He, L., Qu, X. Preparation of exfoliated graphite-based polyethylene composites with enhanced thermal conductivity. Soft Mater 2020, 18, 461–470; https://doi.org/10.1080/1539445x.2020.1714657.Search in Google Scholar

15. Hou, T. F., Shanmugasundaram, A., Kim, D. S., Lee, D. W. Highly flexible superhydrophobic poly(urethane acrylate) film for applications requiring high optical transparency. Macromol. Mater. Eng. 2020, 305, 2000291. https://doi.org/ARTN200029210.1002/mame.202000292.10.1002/mame.202000292Search in Google Scholar

16. Tu, H., Ye, L. Thermal conductive PS/graphite composites. Polym. Adv. Technol. 2009, 20, 21–27. https://doi.org/10.1002/pat.1236.Search in Google Scholar

17. Xu, Y., Wang, X., Hao, Q. A mini review on thermally conductive polymers and polymer-based composites. Compos. Commun. 2021, 24, 100617; https://doi.org/10.1016/j.coco.2020.100617.Search in Google Scholar

18. Agari, Y., Uno, T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 1986, 32, 5705–5712. https://doi.org/10.1002/app.1986.070320702.Search in Google Scholar

19. Wang, J., Carson, J. K., North, M. F., Cleland, D. J. A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int. J. Heat Mass Tran. 2006, 49, 3075–3083. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.007.Search in Google Scholar

20. Su, K. S., Mao, Z. P., Yang, Z. B., Zhang, J. Preparation and characterization of PVC/CsxWO3 composite film with excellent near-infrared light shielding and high visible light transmission. J. Vinyl Addit. Technol. 2021, 27, 356–366; https://doi.org/10.1002/vnl.21811.Search in Google Scholar

21. Wei, B., Zhang, L., Yang, S. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem. Eng. J. 2021, 404, 126437. https://doi.org/10.1016/j.cej.2020.126437.Search in Google Scholar

22. Zhang, X., Zhang, X., Li, Y., Hu, K., Mao, D., Luo, L., Du, T., Zhang, H., Liu, K. Graphite-reinforced Portland cement composites at alternate ultra-high temperatures. Powder Technol. 2021, 378, 647–658; https://doi.org/10.1016/j.powtec.2020.10.039.Search in Google Scholar

23. Zhao, Y., Sugio, K., Choi, Y., Gen, S., Xu, Z., Xu, Z. Effect of anisotropic thermal conductivity of graphite flakes and interfacial thermal resistance on the effective thermal conductivity of graphite flakes/aluminum composites. Mater. Trans. 2021, 62, 98–104; https://doi.org/10.2320/matertrans.MT-M2020071.Search in Google Scholar

24. Xu, D., Wang, G., Chen, X., Li, Y., Liu, Y., Zhang, H. Effects of Mo and Ni on the thermal conductivity of compacted graphite iron at elevated temperature. Int. J. Cast Metals Res. 2019, 32, 243–251; https://doi.org/10.1080/13640461.2019.1659655.Search in Google Scholar

25. Sasaki, R., Takahashi, Y., Hayashi, Y., Kawauchi, S. Atomistic mechanism of anisotropic heat conduction in the liquid crystal 4-heptyl-4 ’-cyanobiphenyl: all-atom molecular dynamics. J. Phys. Chem. B. 2020, 124, 881–889. https://doi.org/10.1021/acs.jpcb.9b08158.Search in Google Scholar PubMed

26. Yang, L., Miyoshi, Y., Sugio, K., Choi, Y., Matsugi, K., Sasaki, G. Effect of graphite orientation distribution on thermal conductivity of Cu matrix composite. Mater. Chem. Phys. 2021, 257, 123702; https://doi.org/10.1016/j.matchemphys.2020.123702.Search in Google Scholar

27. Shi, M., Yang, W., Zhang, Y., Tan, J., Cheng, L., Jiao, Z., Zhen, X. Mechanical and dielectric properties and crystalline behavior of multilayer graphite-filled polyethylene composites. J. Appl. Polym. Sci. 2019, 136, 48131. https://doi.org/https://doi.org/10.1002/app.48131.10.1002/app.48131Search in Google Scholar

28. Fasihi, M., Garmabi, H., Reza Ghaffarian, S., Ohshima, M. A comparative study on thermomechanical and rheological characteristics of graphite/polypropylene nanocomposites: highlighting the role of mixing. J. Vinyl Addit. Technol. 2015, 21, 12–17. https://doi.org/10.1002/vnl.21357.Search in Google Scholar

29. Darby, R. Structure and rheology of molten polymers: from structure to flow behavior and back again; Hanser Publications: Cincinnati, Ohio, USA, 2006.Search in Google Scholar

30. Sun, H. X., Mao, Z. P., Zhang, J. Fabrication of damping material over broad temperature range: blending amorphous styrene-butadiene-styrene triblock copolymer with semi-crystalline syndiotactic 1,2-polybutadiene. J. Vinyl Addit. Technol. 2020, 26, 336–347. https://doi.org/10.1002/vnl.21748.Search in Google Scholar

31. Al-Hartomy, O. A., Al-Salamy, F., Al-Ghamdi, A. A., Fatah, M. A., Dishovsky, N., El-Tantawy, F. Influence of graphite nanosheets on the structure and properties of PVC-based nanocomposites. J. Appl. Polym. Sci. 2011, 120, 3628–3634. https://doi.org/https://doi.org/10.1002/app.33547.10.1002/app.33547Search in Google Scholar

Received: 2021-09-12
Revised: 2022-02-15
Accepted: 2022-03-02
Published Online: 2022-05-20
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2021-0268/html
Scroll to top button