Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 20, 2017

Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites

  • Xiaoyan Zhang , Xiangmin Xu EMAIL logo and Tao Wu

Abstract

In this study, two different surface-modified silica nanoparticles, amino-functionalized nanosilica (ATS) and methyl-functionalized nanosilica (HDS), were separately used as nanofillers to fabricate PA66-based nanocomposites by melt blending. The morphology and interface characteristics of the two nanofillers in the composite system and their influence on the mechanical properties, thermal decomposition behavior, and crystallization behavior of PA66 were investigated. The Avrami and Mo methods were applied to study the non-isothermal crystallization kinetics of the nanocomposites. The results revealed that different surface modifications of silica nanoparticles can produce different influences on the mechanical properties and thermal decomposition behavior of the final nanocomposites. The addition of ATS helps increase the strength and stiffness of PA66/ATS nanocomposites, and in the meantime enhances the thermal stability of PA66. The case of HDS is opposite to that of ATS; however, its incorporation can improve the toughness of the material. In addition, the results also indicate that ATS possesses strong heterogeneous nucleation capability, the introduction of which can accelerate the crystallization rate and increase the crystallization temperature, as well as the degree of crystallinity of PA66, while HDS displays an obvious blocking effect on the crystallization process of PA66.

References

[1] Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR. J. Ind. Eng. Chem. 2015, 21, 11–25.10.1016/j.jiec.2014.03.022Search in Google Scholar

[2] Rhim J-W, Park H-M, Ha C-S. Prog. Polym. Sci. 2013, 38, 10–11.Search in Google Scholar

[3] Alateyah AI, Dhakal HN, Zhang ZY. Adv. Polym. Tech. 2013, 32, 4.10.1002/adv.21368Search in Google Scholar

[4] Paul DR, Robeson LM. Polymer 2008, 49, 3187–3204.10.1016/j.polymer.2008.04.017Search in Google Scholar

[5] Cai D, Jin J, Yusoh K, Rafiq R, Song M. Compos. Sci. Technol. 2012, 72, 471–480.Search in Google Scholar

[6] Yu J, Jiang P, Wu C, Wang L, Wu X. Polym. Compos. 2011, 32, 10.Search in Google Scholar

[7] Naffakh M, Diez-Pascual AM, Gómez-Fatou MA. J. Mater. Chem. 2011, 21, 7423–7433.Search in Google Scholar

[8] Pan H, Qiu Z. Macromolecules 2010, 43, 1499–1506.10.1021/ma9023685Search in Google Scholar

[9] Sisakht Mohsen R, Saied NK, Ali Z, Hosein EM, Hasan P. Polym. Compos. 2009, 30, 3.Search in Google Scholar

[10] Dusunceli N, Colak OU. Int. J. Plast. 2008, 24, 1224–1242.10.1016/j.ijplas.2007.09.003Search in Google Scholar

[11] Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, Fong H. Macromolecules 2007, 40, 6283–6290.10.1021/ma070039pSearch in Google Scholar

[12] Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Mater. Sci. Eng. A 2005, 393, 1–11.10.1016/j.msea.2004.09.044Search in Google Scholar

[13] Lu Y, Zhang Y, Zhang G, Yang M, Yan S, Shen D. Polymer 2004, 45, 8999–9009.10.1016/j.polymer.2004.10.025Search in Google Scholar

[14] Chonkaew W, Sombatsompop N, Brostow W. Eur. Polym. J. 2013, 49, 1461–1470.10.1016/j.eurpolymj.2013.03.022Search in Google Scholar

[15] Han B, Ji G, Wu S, Shen J. Eur. Polym. J. 2003, 39, 1641–1646.10.1016/S0014-3057(03)00075-2Search in Google Scholar

[16] Kim M, Mun SC, Lee CS, Lee MH, Son Y, Park OO. Carbon 2011, 49, 4024–4034.10.1016/j.carbon.2011.05.044Search in Google Scholar

[17] Dasari A, Yu Z-Z, Yang M, Zhang Q-X, Xie X-L, Mai Y-W. Compos. Sci. Technol. 2016, 66, 3097–3114.10.1016/j.compscitech.2005.03.020Search in Google Scholar

[18] Randolph S, Fowlkes J, Rack P. J. Appl. Phys. 2005, 97, 55–89.Search in Google Scholar

[19] Santos WND, Gregorio R. J. Appl. Polym. Sci. 2002, 85, 1779–1786.10.1002/app.10681Search in Google Scholar

[20] Naik AD, Fontaine G, Samyn F, Delva X, Bourgeois Y, Bourbigot S. Polym. Degrad. Stab. 2013, 98, 2653–2662.10.1016/j.polymdegradstab.2013.09.029Search in Google Scholar

[21] Lu X, Qiao X, Yang T, Sun K, Chen X. J. Appl. Polym. Sci. 2011, 122, 3.Search in Google Scholar

[22] Vasanthan N, Murthy NS, Bray RG. Macromolecules 1998, 31, 8433–8435.10.1021/ma980935oSearch in Google Scholar

[23] Wang H-L, Shi T-J, Yang S-Z, Zhai L-F, Hang G-P. J. Appl. Polym. Sci. 2006, 101, 810–817.10.1002/app.22228Search in Google Scholar

[24] Lincoln DM, Vaia RA, Wang Z-G, Hsiao BS, Krishnamoorti R. Polymer 2001, 42, 09975–09985.10.1016/S0032-3861(01)00542-0Search in Google Scholar

[25] Liu X, Wu Q, Berglund LA. Polymer 2002, 43, 4967–4972.10.1016/S0032-3861(02)00331-2Search in Google Scholar

[26] Zhang X, Li Y-B, Zuo Y, Lv G-Y, Mu Y-H, Li H. Compos. Pt. A Appl. Sci. Manuf. 2007, 38, 843–848.10.1016/j.compositesa.2006.08.002Search in Google Scholar

[27] Friedrich K. Crazing in Polymers, Springer: Berlin, 1983, pp. 225–274.10.1007/BFb0024059Search in Google Scholar

[28] Ouederni M, Phillips PJ. J. Polym. Sci. Pt B Polym. Phys. 1995, 33, 1313–1322.10.1002/polb.1995.090330901Search in Google Scholar

[29] Yu H-Y, Qin Z, Yan C-F, Yao J. ACS Sustain. Chem. Eng. 2014, 2, 875–886.10.1021/sc400499gSearch in Google Scholar

[30] Hu J, Jia X, Li C, Ma Z, Zhang G, Sheng W, Zhang X, Wei Z. J. Mater. Sci. 2014, 49, 7.Search in Google Scholar

[31] Tanniru M, Yuan Q, Misra RDK. Polymer 2006, 47, 2133–2146.10.1016/j.polymer.2006.01.063Search in Google Scholar

[32] Rong MZ, Zhang MQ, Pan SL, Friedrich K. J. Appl. Polym. Sci. 2004, 92, 176–183.Search in Google Scholar

[33] Avrami M. J. Chem. Phys. 1941, 9, 177–184.10.1063/1.1750872Search in Google Scholar

[34] Ozawa T. Polymer 1971, 12, 150–158.10.1016/0032-3861(71)90041-3Search in Google Scholar

[35] Liu T, Mo Z, Wang S, Zhang H. Polym. Eng. Sci. 1997, 37, 568–575.10.1002/pen.11700Search in Google Scholar

[36] Jeziorny A. Polymer 1978, 19, 1142–1144.10.1016/0032-3861(78)90060-5Search in Google Scholar

[37] Kuo MC, Huang JC, Chen M. Mater. Chem. Phys. 2006, 99, 258–268.10.1016/j.matchemphys.2005.10.021Search in Google Scholar

[38] Hu X, Lesser AJ. Polymer 2007, 45, 2333–2340.10.1016/j.polymer.2003.12.079Search in Google Scholar

[39] Dobreva A, Gutzow I. J. Non-Cryst. Solids 1993, 162, 13–25.10.1016/0022-3093(93)90737-ISearch in Google Scholar

[40] Wunderlich B. Crystal Nucleation, Growth, Annealing, Academic Press: New York, 1976, vol. 3.Search in Google Scholar

[41] Kissinger HE. Anal. Chem. 1957, 29, 1702–1706.10.1021/ac60131a045Search in Google Scholar

Received: 2016-6-1
Accepted: 2016-10-9
Published Online: 2017-1-20
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2016-0192/html
Scroll to top button