Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 11, 2013

Application of high-resolution label-free imaging methods to obtain tissue images for histological analysis/Anwendung hochauflösender markierungsfreier Bildgebungsverfahren zur histologischen Analyse von Gewebebildern

  • Yuxiang Wu , Wenyan Hu , Ling Fu , Xiaohua Lv and Shaoqun Zeng EMAIL logo

Abstract

In routine clinical work, classical histology is regarded as the gold standard for the discrimination of healthy and pathological tissue. However, the whole process can be tediously long and has some restraints. As a result, under most conditions, doctors have to wait for the histological results until decisions can be made. In this paper, a practical procedure of tissue preprocess, serial section, label-free imaging and image analysis is demonstrated, which costs less time and could give sufficiently good contrast to obtain information about cellular structure and organization of biological tissues.

Zusammenfassung

In der klinischen Routine gilt die klassische Histologie als Goldstandard für die Diskriminierung von gesundem und erkranktem Gewebe, ist jedoch zeitaufwending und unterliegt gewissen Beschränkungen. Häufig müssen Ärzte auf die histologischen Ergebnisse warten, bevor Entscheidungen getroffen werden können. Im vorliegenden Artikel wird ein praktisches Verfahren der Gewebevorbereitung, seriellen Schnittanfertigung, markierungsfreien Bildgebung und Bildanalyse vorgestellt, welches weniger Zeit kostet und einen ausreichend guten Kontrast liefert, um Informationen über die zelluläre Struktur und die Organisation von biologischen Geweben zu erhalten.


Corresponding author: Shaoqun Zeng, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

This work was supported by the National Natural Science Foundation of China (Grant No. 30800314, 30973058). The authors would like to express special thanks to Mr. Yang Shiming for helpful discussions.

References

[1] Mitas M, Almeida JS, Mikhitarian K, Gillanders WE, Lewin DN, Spyropoulos DD, Hoover L, Graham A, Glenn T, King P, Cole DJ, Hawes R, Reed CE, Hoffman BJ. Accurate discrimination of Barrett’s esophagus and esophageal adenocarcinoma using a quantitative three-tiered algorithm and multimarker real-time reverse transcription-PCR. Clin Cancer Res 2005;11(6):2205–14.10.1158/1078-0432.CCR-04-1091Search in Google Scholar PubMed

[2] Chen Y, Zheng B, Robbins DH, Lewin DN, Mikhitarian K, Graham A, Rumpp L, Glenn T, Gillanders WE, Cole DJ, Lu X, Hoffman BJ, Mitas M. Accurate discrimination of pancreatic ductal adenocarcinoma and chronic pancreatitis using multimarker expression data and samples obtained by minimally invasive fine needle aspiration. Int J Cancer 2007;120(7):1511–7.10.1002/ijc.22487Search in Google Scholar PubMed

[3] Afonso J, Longatto-Filho A, Baltazar F, Sousa N, Costa FE, Morais A, Amaro T, Lopes C, Santos LL. CD147 overexpression allows an accurate discrimination of bladder cancer patients’ prognosis. Eur J Surg Oncol 2011;37(9):811–7.10.1016/j.ejso.2011.06.006Search in Google Scholar PubMed

[4] Yeung KB, Thomas PK, King RH, Waddy H, Will RG, Hughes RA, Gregson NA, Leibowitz S. The clinical spectrum of peripheral neuropathies associated with benign monoclonal IgM, IgG and IgA paraproteinaemia. Comparative clinical, immunological and nerve biopsy findings. J Neurol 1991;238(7):383–91.10.1007/BF00319857Search in Google Scholar PubMed

[5] Ejima A, Watanabe C, Koyama H, Satoh H. Analysis of trace elements in the central nerve tissues with inductively coupled plasma-mass spectrometry. Tohoku J Exp Med 1996;178(1):1–10.10.1620/tjem.178.1Search in Google Scholar PubMed

[6] Kosins AM, Scholz T, Mendoza C, Lin P, Shepard B, Evans GR, Keirstead HS. Improvement of peripheral nerve regeneration following immunological demyelination in vivo. Plast Reconstr Surg 2011;127(5):1813–9.10.1097/PRS.0b013e31820cf2b0Search in Google Scholar PubMed

[7] Kosins AM, Scholz T, Lin M, Evans GR, Keirstead HS. Immunological demyelination enhances nerve regeneration after acute transection injury in the adult rat sciatic nerve. Ann Plast Surg 2012;68(3):290–4.10.1097/SAP.0b013e31823dce7eSearch in Google Scholar PubMed

[8] Centonze Frohlich V. Phase contrast and differential interference contrast (DIC) microscopy. J Vis Exp 2008;(17):844.10.3791/844Search in Google Scholar PubMed PubMed Central

[9] Kouskousis B, Kitcher DJ, Collins S, Roberts A, Baxter GW. Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy. Appl Opt 2008;47(28):5182–9.10.1364/AO.47.005182Search in Google Scholar

[10] Iwasaki S, Aoyagi H. Fluorescence immunohistochemistry in combination with differential interference contrast microscopy for studies of semi-ultrathin specimens of epoxy resin-embedded samples. Methods Mol Biol 2011;689:229–40.10.1007/978-1-60761-950-5_14Search in Google Scholar PubMed

[11] Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 2003;100(12):7075–80.10.1073/pnas.0832308100Search in Google Scholar

[12] Adur J, Pelegati VB, de Thomaz AA, Baratti MO, Andrade LA, Carvalho HF, Bottcher-Luiz F, Cesar CL. Second harmonic generation microscopy as a powerful diagnostic imaging modality for human ovarian cancer. J Biophotonics 2012. doi: 10.1002/jbio.201200108.10.1002/jbio.201200108Search in Google Scholar

[13] Ambekar R, Lau TY, Walsh M, Bhargava R, Toussaint Jr. KC. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed Opt Express 2012;3(9):2021–35.10.1364/BOE.3.002021Search in Google Scholar

[14] Lau TY, Ambekar R, Toussaint KC. Quantification of collagen fiber organization using three-dimensional Fourier transform-second-harmonic generation imaging. Opt Express 2012;20(19):21821–32.10.1364/OE.20.021821Search in Google Scholar

[15] Valckx FM, Thijssen JM. Characterization of echographic image texture by cooccurrence matrix parameters. Ultrasound Med Biol 1997;23(4):559–71.10.1016/S0301-5629(97)00041-0Search in Google Scholar

[16] Yang X, Tridandapani S, Beitler JJ, Yu DS, Yoshida EJ, Curran WJ, Liu T. Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: an in vivo study of late toxicity. Med Phys 2012;39(9):5732–9.10.1118/1.4747526Search in Google Scholar PubMed PubMed Central

[17] Heshmaty-Manesh D, Tarn SC. Optical transfer function calculation by Winograd’s fast Fourier transform. Appl Opt 1982;21(18):3273–7.10.1364/AO.21.003273Search in Google Scholar PubMed

[18] Hu W, Zhao G, Wang C, Zhang J, Fu L. Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues. PLoS One 2012;7(5):e37962.10.1371/journal.pone.0037962Search in Google Scholar PubMed PubMed Central

[19] Onul A, Colvard MD, Paradise WA, Elseth KM, Vesper BJ, Gouvas E, Deliu Z, Garcia KD, Pestle WJ, Radosevich JA. Application of immunohistochemical staining to detect antigen destruction as a measure of tissue damage. J Histochem Cytochem 2012;60(9):683–93.10.1369/0022155412452146Search in Google Scholar PubMed PubMed Central

[20] Matthews JB. Influence of decalcification on immunohistochemical staining of formalin-fixed paraffin-embedded tissue. J Clin Pathol 1982;35(12):1392–4.10.1136/jcp.35.12.1392Search in Google Scholar PubMed PubMed Central

[21] Matsuo S, Sugiyama T, Okuyama T, Yoshikawa K, Honda K, Takahashi R, Maeda S. Preservation of pathological tissue specimens by freeze-drying for immunohistochemical staining and various molecular biological analyses. Pathol Int 1999;49(5):383–90.10.1046/j.1440-1827.1999.00887.xSearch in Google Scholar

[22] Fitzgerald SD, Reed WM, Fulton RM. Development and application of an immunohistochemical staining technique to detect avian polyomaviral antigen in tissue sections. J Vet Diagn Invest 1995;7(4):444–50.10.1177/104063879500700404Search in Google Scholar

[23] Allen RD, Allen NS, Travis JL. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil 1981;1(3):291–302.10.1002/cm.970010303Search in Google Scholar

[24] Tsunoda M, Isailovic D, Yeung ES. Real-time three-dimensional imaging of cell division by differential interference contrast microscopy. J Microsc 2008;232(2):207–11.10.1111/j.1365-2818.2008.02091.xSearch in Google Scholar

[25] Salmon ED, Tran P. High-resolution video-enhanced differential interference contrast light microscopy. Methods Cell Biol 2003;72:289–318.10.1016/S0091-679X(03)72014-7Search in Google Scholar

[26] Arnison MR, Larkin KG, Sheppard CJ, Smith NI, Cogswell CJ. Linear phase imaging using differential interference contrast microscopy. J Microsc 2004;214(Pt 1):7–12.10.1111/j.0022-2720.2004.01293.xSearch in Google Scholar PubMed

[27] Denk W. Principles of multiphoton-excitation fluorescence microscopy. CSH Protoc 2007;2007:pdb.top23. doi: 10.1101/pdb.top23.10.1101/pdb.top23Search in Google Scholar PubMed

[28] Ustione A, Piston DW. A simple introduction to multiphoton microscopy. J Microsc 2011;243(3):221–6.10.1111/j.1365-2818.2011.03532.xSearch in Google Scholar PubMed

[29] Aktsipetrov OA, Misuryaev TV, Murzina TV, Blinov LM, Fridkin VM, Palto SP. Optical second-harmonic-generation probe of two-dimensional ferroelectricity. Opt Lett 2000;25(6):411–3.10.1364/OL.25.000411Search in Google Scholar PubMed

[30] König K. Multiphoton microscopy in life sciences. J Microsc 2000;200(Pt 2):83–104.10.1046/j.1365-2818.2000.00738.xSearch in Google Scholar PubMed

[31] Zhang J, Tong L, Wang L, Li N. Texture analysis of multiple sclerosis: a comparative study. Magn Reson Imaging 2008;26(8):1160–6.10.1016/j.mri.2008.01.016Search in Google Scholar

[32] Mohd Khuzi A, Besar R, Wan Zaki W, Ahmad N. Identification of masses in digital mammogram using gray level co-occurrence matrices. Biomed Imaging Interv J 2009;5(3):e17.10.2349/biij.5.3.e17Search in Google Scholar

[33] Cicchi R, Kapsokalyvas D, De Giorgi V, Maio V, Van Wiechen A, Massi D, Lotti T, Pavone FS. Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy. J Biophotonics 2010;3(1–2):34–43.10.1002/jbio.200910062Search in Google Scholar

[34] Hu W, Li H, Wang C, Gou S, Fu L. Characterization of collagen fibers by means of texture analysis of second harmonic generation images using orientation-dependent gray level co-occurrence matrix method. J Biomed Opt 2012;17(2):026007.10.1117/1.JBO.17.2.026007Search in Google Scholar

[35] Pantic I, Pantic S, Basta-Jovanovic G. Gray level co-occurrence matrix texture analysis of germinal center light zone lymphocyte nuclei: physiology viewpoint with focus on apoptosis. Microsc Microanal 2012;18(3):470–5.10.1017/S1431927612000098Search in Google Scholar

[36] Jones SM, Boyer AL. Investigation of an FFT-based correlation technique for verification of radiation treatment setup. Med Phys 1991;18(6):1116–25.10.1118/1.596743Search in Google Scholar

[37] Wu LC, D’Amelio F, Fox RA, Polyakov I, Daunton NG. Light microscopic image analysis system to quantify immunoreactive terminal area apposed to nerve cells. J Neurosci Methods 1997;74(1):89–96.10.1016/S0165-0270(97)02266-8Search in Google Scholar

[38] Auada MP, Adam RL, Leite NJ, Puzzi MB, Cintra ML, Rizzo WB, Metze K. Texture analysis of the epidermis based on fast Fourier transformation in Sjögren-Larsson syndrome. Anal Quant Cytol Histol 2006;28(4):219–27.Search in Google Scholar

[39] Watanabe Y, Itagaki T. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit. J Biomed Opt 2009;14(6):060506.10.1117/1.3275463Search in Google Scholar PubMed

[40] Millet LJ, Collens MB, Perry GL, Bashir R. Pattern analysis and spatial distribution of neurons in culture. Integr Biol (Camb) 2011;3(12):1167–78.10.1039/c1ib00054cSearch in Google Scholar PubMed

[41] Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 2001;7(7):864–8.10.1038/89997Search in Google Scholar PubMed

[42] Helmchen F, Denk W. New developments in multiphoton microscopy. Curr Opin Neurobiol 2002;12(5):593–601.10.1016/S0959-4388(02)00362-8Search in Google Scholar

[43] Reshak AH. High second harmonic generation signal from muscles and fascia pig’s muscles using the two-photon laser scanning microscope. J Microsc 2009;234(3):280–6.10.1111/j.1365-2818.2009.03169.xSearch in Google Scholar PubMed

[44] Bélisle J, Zigras T, Costantino S, Cartier R, Butany J, Wiseman PW, Leask RL. Second harmonic generation microscopy to investigate collagen configuration: a pericarditis case study. Cardiovasc Pathol 2010;19(4):e125–8.10.1016/j.carpath.2009.06.001Search in Google Scholar PubMed

[45] Jiang X, Zhong J, Liu Y, Yu H, Zhuo S, Chen J. Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy. Scanning 2011;33(1):53–6.10.1002/sca.20219Search in Google Scholar PubMed

[46] Göppner D, Mechow N, Liebscher J, Thiel E, Seewald G, Buchholz A, Gollnick H, Philipp CM, Schönborn KH. High-resolution two-photon imaging of HE-stained samples in dermatohistopathology – A pilot study on skin tumours. Photon Lasers Med 2012;1(2):133–40.10.1515/plm-2012-0008Search in Google Scholar

[47] Xu C, Zipfel W, Shear JB, Williams RM, Webb WW. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 1996;93(20):10763–8.10.1073/pnas.93.20.10763Search in Google Scholar PubMed PubMed Central

[48] Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 2003;21(11):1369–77.10.1038/nbt899Search in Google Scholar PubMed

[49] Wu Y, Sui T, Cao X, Lv X, Zeng S, Sun P. Confocal imaging reveals three-dimensional fine structure difference between ventral and dorsal nerve roots. J Biomed Opt 2011;16(5):050502.10.1117/1.3575167Search in Google Scholar PubMed

[50] Wu S, Li H, Yang H, Zhang X, Li Z, Xu S. Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy. J Biomed Opt 2011;16(4):040502.10.1117/1.3565439Search in Google Scholar PubMed

[51] Zhuo S, Zhu X, Wu G, Chen J, Xie S. Quantitative biomarkers of colonic dysplasia based on intrinsic second-harmonic generation signal. J Biomed Opt 2011;16(12):120501.10.1117/1.3659715Search in Google Scholar PubMed

[52] Chen J, Zhuo S, Jiang X, Zhu X, Zheng L, Xie S, Lin B, Zeng H. Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease. J Biomed Opt 2011;16(5):051305.10.1117/1.3569617Search in Google Scholar PubMed

[53] Smirnova OD, Rogatkin DA, Litvinova KS. Collagen as in vivo quantitative fluorescent biomarkers of abnormal tissue changes. J Innov Opt Health Sci 2012;5(2):1250010.10.1142/S1793545812500101Search in Google Scholar

[54] Jiang XS, Zhuo SM, Chen JX. Diagnostic application of multiphoton microscopy in epithelial tissues. J Innov Opt Health Sci 2011;4(2):159–63.10.1142/S179354581100137XSearch in Google Scholar

[55] Le TT, Cheng JX. Non-linear optical imaging of obesity-related health risks: review. J Innov Opt Health Sci 2009;2(1):9–25.10.1142/S1793545809000371Search in Google Scholar PubMed PubMed Central

Received: 2012-11-12
Revised: 2013-2-28
Accepted: 2013-3-7
Published Online: 2013-4-11
Published in Print: 2013-5-1

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/plm-2012-0057/html
Scroll to top button