Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access April 20, 2019

Measurement and classification of human characteristics and capabilities during interaction tasks

  • Valeria Villani EMAIL logo , Julia N. Czerniak , Lorenzo Sabattini , Alexander Mertens and Cesare Fantuzzi

Abstract

In this paperwe address the need to design adaptive interacting systems for advanced industrial production machines. Modern production systems have become highly complex and include many subsidiary functionalities, thus making it difficult for least skilled human operators interact with them. In this regard, adapting the behavior of the machine and of the operator interface to the characteristics of the user allows a more effective interaction process, with a positive impact on manufacturing efficiency and user’s satisfaction. To this end, it is crucial to understandwhich are the user’s capabilities that influence the interaction and, hence, should be measured to provide the correct amount of adaptation.Moving along these lines, in this paper we identify groups of users that, despite having different individual capabilities and features, have common needs and response to the interaction with complex production systems. As a consequence,we define clusters of users that have the same need for adaptation. Then, adaptation rules can be defined by considering such users’ clusters, rather than addressing specific individual user’s needs.

References

[1] M.-P. Pacaux-Lemoine, D. Trentesaux, G. Z. Rey, P. Millot, Designing intelligent manufacturing systems through humanmachine cooperation principles: A humancentered approach, Computers & Industrial Engineering, 2017, 111, 581–59510.1016/j.cie.2017.05.014Search in Google Scholar

[2] M. R. Endsley, Toward a theory of situation awareness in dynamic systems, Human factors, 1995, 37(1), 32–6410.1518/001872095779049543Search in Google Scholar

[3] P. M. Salmon, N. A. Stanton, G. H. Walker, C. Baber, D. P. Jenkins, R. McMaster, M. S. Young, What really is going on? Review of situation awareness models for individuals and teams, Theoretical Issues in Ergonomics Science, 2008, 9(4), 297–32310.1080/14639220701561775Search in Google Scholar

[4] J. Rasmussen, Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models, IEEE Transactions on Systems,Man, and Cybernetics, 1983, SMC-13 (3), 257–26610.1109/TSMC.1983.6313160Search in Google Scholar

[5] T. B. Sheridan, Humans and Automation: System Design and Research Issues, JohnWiley & Sons, Inc., New York, NY, USA, 2002Search in Google Scholar

[6] V. Villani, L. Sabattini, J. N. Czerniak, A. Mertens, C. Fantuzzi, MATE robots simplifyingmy work: benefits and socio-ethical implications, IEEE Robotics & Automation Magazine, 2018, 25(1), 37–4510.1109/MRA.2017.2781308Search in Google Scholar

[7] R. Parasuraman, T. B. Sheridan, C. D.Wickens, A model for types and levels of human interaction with automation, IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 2000, 30(3), 286–29710.1109/3468.844354Search in Google Scholar PubMed

[8] A. N. Lee, J. L. Martinez Lastra, Enhancement of industrial monitoring systems by utilizing context awareness, In: 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 201310.1109/CogSIMA.2013.6523858Search in Google Scholar

[9] T. B. Sheridan, Supervisory control of remote manipulators, vehicles and dynamic processes: Experiments in command and display aiding, Technical report, Massachusetts Institute of Technology – Man-Machine Systems Lab, 1983Search in Google Scholar

[10] T. Inagaki, T. Sheridan, Authority and responsibility in humanmachine systems: Is machine-initiated trading of authority permissible in the human-centered automation framework?, Proceeding of Applied Human Factors and Ergonomics, 2008Search in Google Scholar

[11] L. Habib, M. P. Pacaux-Lemoine, P. Millot. A method for designing levels of automation based on a human-machine cooperation model, IFAC-PapersOnLine, 2017, 50(1), 1372–137710.1016/j.ifacol.2017.08.235Search in Google Scholar

[12] H. Sharma, R. Kuvedu-Libla, A. Ramani, ConFra: A context aware humanmachine interface framework for in-vehicle infotainment applications, In: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2008), 2008Search in Google Scholar

[13] A. Amditis, H. Kussmann, A. Polychronopoulos, J. Engström, L. Andreone, System architecture for integrated adaptive HMI solutions, In: 2006 IEEE Intelligent Vehicles Symposium, 2006, 388–39310.1109/IVS.2006.1689659Search in Google Scholar

[14] S. R. Garzon, M. Poguntke, The personal adaptive incar HMI: Integration of external applications for personalized use, In: Springer Berlin Heidelberg, editor, Advances in User Modeling, 2012, 35–4610.1007/978-3-642-28509-7_5Search in Google Scholar

[15] T. Inagaki, Situation-adaptive autonomy: Dynamic trading of authority between human and automation, In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2000, 44(13), 13–1610.1177/154193120004401304Search in Google Scholar

[16] T. Gu, H. K. Pung, D. Q. Zhang, A middleware for building context-aware mobile services, In: 2004 IEEE 59th Vehicular Technology Conference, VTC 2004-Spring (IEEE Cat. No.04CH37514), 2004, 2656–2660Search in Google Scholar

[17] G. Viano, A. Parodi, J Alty, C. Khalil, I. Angulo, D. Biglino, et al.. Adaptive user interface for process control based on multiagent approach, In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ’00, ACM, 2000, 201–20410.1145/345513.345316Search in Google Scholar

[18] J. N. Czerniak, V. Villani, L. Sabattini, C. Fantuzzi, C. Brandl, A. Mertens, Systematic approach to develop a flexible adaptive human-machine interface in sociotechnological systems, In: Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), Springer, 276–288, 201810.1007/978-3-319-96068-5_31Search in Google Scholar

[19] H. Luczak, Wesen menschlicher leistung. Arbeitsgestaltung in Produktion und Verwaltung. Wirtschaftsverlag Bachem, Köln, 1989, 39–64Search in Google Scholar

[20] V. Villani, L. Sabattini, J. N. Czerniak, A. Mertens, B. Vogel-Heuser, C. Fantuzzi, Towards modern inclusive factories: A methodology for the development of smart adaptive humanmachine interfaces, In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 201710.1109/ETFA.2017.8247634Search in Google Scholar

[21] A. Mertens, Alternsgerechte Gestaltung von Mensch-Maschine-Schnittstellen zur ergonomischen Interaktion mit telemedizinischen Systemen und Dienstleistungen. Shaker, 2014Search in Google Scholar

[22] N. Jochems, Altersdifferenzierte Gestaltung der Mensch-Rechner-Interaktion amd Beispiel von Projektmanagementaufgaben, Shaker, 2010Search in Google Scholar

[23] E. Grandjean, K. H. E. Kroemer, Fitting the task to the human: a textbook of occupational ergonomics, CRC press, 1997Search in Google Scholar

[24] M. J. Mayer, C. B. Kim, A. Svingos, A. Glucs, Foveal flicker sensitivity in healthy aging eyes. i. compensating for pupil variation, Journal of the Optical Society of America A, 1988, 5(12), 2201–220910.1364/JOSAA.5.002201Search in Google Scholar

[25] J. Helve, U. Krause, The influence of age on performance in the panel d-15 colour vision test, Acta ophthalmologica, 1972, 50(6), 896–90010.1111/j.1755-3768.1972.tb06628.xSearch in Google Scholar

[26] F. Schieber, Vision and aging, In: Handbook of the Psychology of Aging (Sixth Edition), Elsevier, 2006, 129–16110.1016/B9-78-012101-2/64950-0100Search in Google Scholar

[27] R. Guski, Wahrnehmen: ein Lehrbuch, Kohlhammer Stuttgart, 1996Search in Google Scholar

[28] C. Owsley, R. Sekuler, D. Siemsen, Contrast sensitivity throughout adulthood, Vision research, 1983, 23(7), 689–69910.1016/0042-6989(83)90210-9Search in Google Scholar

[29] D. G. Bouwhuis, Ageing, perceptual and cognitive functioning and interactive equipment, In: Course book on gerontechnology, COST A5: normal and pathological ageing and the impact of technology: selected topics, 1994Search in Google Scholar

[30] R. Pak, A. McLaughlin, Designing displays for older adults, CRC press, 201010.1201/b10316Search in Google Scholar

[31] M. J. Collins, B. Brown, K. J. Bowman, Peripheral visual acuity and age, Ophthalmic and Physiological Optics, 1989, 9(3), 314–31610.1111/j.1475-1313.1989.tb00914.xSearch in Google Scholar PubMed

[32] P. Mouroulis, Visual instrumentation: optical design and engineering principles, McGraw-Hill, 1999Search in Google Scholar

[33] J. L. Fozard, Vision and hearing in aging, In: J. Birren (Ed.), Handbook of the Psychology of Aging, Elsevier, 3rd edition, 1990, 143–15610.1016/B978-0-12-101280-9.50015-2Search in Google Scholar

[34] F. Schieber, Aging and the senses, In: Handbook of Mental Health and Aging, Elsevier, 2nd edition, 1992, 251–30610.1016/B978-0-12-101277-9.50014-0Search in Google Scholar

[35] D. W. Kline, C. T. Scialfa, Sensory and perceptual functioning: basic research and human factors implications, In: A. D. Fisk, W. A. Rogers (Eds.), Handbook of Human Factors and the Older Adult, Academic Press, 1997, 27–54Search in Google Scholar

[36] G. Bartlett, J. D. Stewart, R. Tamblyn, M. Abrahamowicz, Normal distributions of thermal and vibration sensory thresholds,Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 1998, 21(3), 367–37410.1002/(SICI)1097-4598(199803)21:3<367::AID-MUS11>3.0.CO;2-XSearch in Google Scholar

[37] W. Saup, Alter und Umwelt: eine Einführung in die ökologische Gerontologie, W. Kohlhammer, 1993Search in Google Scholar

[38] G. Demiris, E. Krupinski, N. Charness, Designing telehealth for an aging population: A human factors perspective, CRC press, 2011Search in Google Scholar

[39] E. A. Fleishman, Structure and measurement of psychomotor abilities, In: R. N. Singer (Ed.), The psychomotor domain: movement behaviors, Lea & Febiger, 1972Search in Google Scholar

[40] R. T. Zacks, L. Hasher, K. Z. H. Li, Human memory, In: F. I. M. Craik, T. A. Salthouse (Eds.), The Handbook of Aging and Cognition, Lawrence Erlbaum Associates Publishers, 2000, 293–357Search in Google Scholar

[41] K. W. Schaie, S. L. Willis, Handbook of the psychology of aging, Academic Press, 2010Search in Google Scholar

[42] P. B. Baltes, U. Lindenberger, U. M. Staudinger, Lifespan theory in developmental psychology, In: Handbook of Child Psychology, Wiley, 1998, 1029–1143Search in Google Scholar

[43] D. C. Park, C. Hertzog, D. P. Kidder, R.W. Morrell, C. B.Mayhorn, Effect of age on event-based and time-based prospective memory, Psychology and Aging, 1997, 12(2), 31410.1037/0882-7974.12.2.314Search in Google Scholar

[44] M. Vercruyssen, Age and motor performance for the elderly, In: L. J. Berlo, J. van Rietsema (Eds.), Gerontechnology - Human factors for an aging population, Course material first international post-graduate course on gerontechnology, Eindhoven University of Technology, Center for Biomedical and Health Care Technology, 1993Search in Google Scholar

[45] J. M. McDowd, R. J. Shaw, Attention, In: F. I. M. Craik, T. A. Salthouse (Eds.), The Handbook of Aging and Cognition, Psychology Press, 2000, 239–250Search in Google Scholar

[46] E. Olbrich, Zur förderung von kompetenz im höheren lebensalter, In: Altern – Ein lebenslanger Prozeß der sozialen Interaktion, Springer, 1990, 7–2710.1007/978-3-642-72448-0_2Search in Google Scholar

[47] J. L. Horn, The theory of fluid and crystallized intelligence in relation to concepts of cognitive psychology and aging in adulthood, In: Aging and Cognitive Processes, Springer, 1982, 237–27810.1007/978-1-4684-4178-9_14Search in Google Scholar

[48] A. A. Poljakov, Physical working capacity of the elderly, In: E. Lang, K. Arnold (Eds.), Altern und Leistung: medizinische, psychologische und soziale Aspekte, Enke, 1991, 100–109Search in Google Scholar

[49] M. E. Hackel, G. A. Wolfe, S. M. Bang, J. S. Canfield, Changes in hand function in the aging adult as determined by the Jebsen test of hand function, Physical Therapy, 1992, 72(5), 373–37710.1093/ptj/72.5.373Search in Google Scholar

[50] M. W. Smith, J. Sharit, S. J. Czaja, Aging, motor control, and the performance of computer mouse tasks, Human Factors, 1999, 41(3), 389–39610.1518/001872099779611102Search in Google Scholar

[51] International standard classification of education, Technical report, UNESCO Institute for Statistics, 2012Search in Google Scholar

[52] M. Kankaraš, G. Montt, M. Paccagnella, G. Quintini, W. Thorn, Skills matter: Further results from the survey of adult skills, OECD skills studies, OECD Publishing, 2016Search in Google Scholar

[53] A. C. Marinescu, S. Sharples, A. C. Ritchie, T. Sánchez López, M. McDowell, H. P. Morvan, Physiological parameter response to variation of mental workload, Human Factors, 2018, 60(1), 31–5610.1177/0018720817733101Search in Google Scholar

[54] J. Heard, C. E. Harriott, J. A. Adams, A survey of workload assessment algorithms, IEEE Transactions on Human-Machine Systems, 201810.1109/THMS.2017.2782483Search in Google Scholar

Received: 2018-10-29
Accepted: 2019-03-22
Published Online: 2019-04-20

© 2019 Valeria Villani et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/pjbr-2019-0016/html
Scroll to top button