Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) August 21, 2020

Crystal structure of (μ2-1,1′-bis(diphenylphosphino)butane-κ2P,P′)-bis[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-κS]-di-gold(I), C44H42Au2F2N2O2P2S2

  • Chien Ing Yeo and Edward R.T. Tiekink ORCID logo EMAIL logo

Abstract

C44H42Au2F2N2O2P2S2, triclinic, P1̄ (no. 2), a = 8.8035(2) Å, b = 11.4764(3) Å, c = 21.2293(6) Å, α = 83.550(2)°, β = 82.256(2)°, γ = 83.793(2)°, V = 2102.40(10) Å3, Z = 2, Rgt(F) = 0.0268, wRref(F2) = 0.0577, T = 100(2) K.

CCDC no.: 2022892

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.23 × 0.19 × 0.18 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:7.19 mm−1
Diffractometer, scan mode:SuperNova, ω
θmax, completeness:27.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:48879, 9642, 0.047
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 8323
N(param)refined:527
Programs:CrysAlisPRO [1], SHELX [2], [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Au1−0.39937(2)0.87120(2)0.26697(2)0.02080(4)
Au20.28914(2)0.25478(2)0.27939(2)0.02289(5)
S1−0.57306(11)0.96289(8)0.34050(5)0.0283(2)
S20.46758(12)0.21256(9)0.19285(6)0.0334(2)
P1−0.21561(11)0.79847(8)0.19320(5)0.0209(2)
P20.12237(10)0.31295(8)0.36244(5)0.01881(19)
O1−0.8576(3)0.9704(2)0.37917(15)0.0321(7)
O20.3025(4)0.3984(3)0.14240(17)0.0478(8)
N1−0.7699(4)0.7857(3)0.35487(19)0.0346(9)
N20.5533(4)0.3841(4)0.0983(2)0.0491(11)
C1a−0.7419(4)0.8905(3)0.3573(2)0.0264(9)
C2a−0.6616(4)0.6938(3)0.3358(2)0.0327(10)
C3a−0.5940(5)0.6168(4)0.3818(3)0.0387(11)
H3a−0.6077520.6333930.4251310.046*
C4a−0.5058(5)0.5149(4)0.3635(3)0.0481(14)
F1a−0.4336(5)0.4474(3)0.4035(3)0.068(2)
C5a−0.4823(5)0.4867(4)0.3022(3)0.0460(13)
H5a−0.4225200.4164100.2909090.055*
C6a−0.5494(5)0.5652(4)0.2565(3)0.0487(13)
H6a−0.5341090.5480360.2131780.058*
C7a−0.6375(5)0.6670(4)0.2724(2)0.0363(10)
H7a−0.6817420.7188380.2402050.044*
C2′b−0.6616(4)0.6938(3)0.3358(2)0.0327(10)
C3′b−0.5940(5)0.6168(4)0.3818(3)0.0387(11)
H3′b−0.6077520.6333930.4251310.046*
C4′b−0.5058(5)0.5149(4)0.3635(3)0.0481(14)
H4′b−0.4602160.4629520.3952610.058*
C5′b−0.4823(5)0.4867(4)0.3022(3)0.0460(13)
H5′b−0.4225200.4164100.2909090.055*
C6′b−0.5494(5)0.5652(4)0.2565(3)0.0487(13)
F1′b−0.5165(10)0.5453(7)0.2012(4)0.056(3)
C7′b−0.6375(5)0.6670(4)0.2724(2)0.0363(10)
H7′b−0.6817420.7188380.2402050.044*
C8−1.0013(4)0.9244(4)0.4022(2)0.0354(10)
H8A−1.0417060.8939070.3671710.053*
H8B−1.0747200.9871590.4191890.053*
H8C−0.9861660.8606060.4362240.053*
C9−0.1512(4)0.6440(3)0.21371(18)0.0229(8)
H9A−0.2404580.5967950.2182760.027*
H9B−0.0758130.6158850.1784400.027*
C10−0.0776(4)0.6246(3)0.27535(19)0.0241(8)
H10A−0.1553710.6449060.3116280.029*
H10B0.0062210.6766570.2725610.029*
C11−0.0124(4)0.4957(3)0.28690(19)0.0241(8)
H11A−0.0961820.4442160.2880670.029*
H11B0.0664760.4765950.2507480.029*
C120.0596(4)0.4696(3)0.34888(19)0.0216(8)
H12A−0.0166470.4931670.3850030.026*
H12B0.1488730.5160770.3466980.026*
C130.4492(5)0.3433(4)0.1391(2)0.0384(11)
C14c0.7054(5)0.3287(4)0.0980(2)0.0431(12)
C15c0.7667(6)0.2521(5)0.0513(3)0.0499(13)
H15c0.7063260.2375610.0196320.060*
C16c0.9134(6)0.1991(5)0.0517(3)0.0551(14)
F2c0.9678(5)0.1232(5)0.0121(2)0.070(2)
C17c1.0078(6)0.2237(5)0.0948(3)0.0596(16)
H17c1.1104810.1879580.0939360.071*
C18c0.9474(6)0.3032(5)0.1401(3)0.0470(13)
H18c1.0107670.3230520.1694000.056*
C19c0.8004(6)0.3512(5)0.1420(3)0.0538(14)
H19c0.7603970.4015830.1740570.065*
C14′d0.7054(5)0.3287(4)0.0980(2)0.0431(12)
C15′d0.7667(6)0.2521(5)0.0513(3)0.0499(13)
H15′d0.7063260.2375610.0196320.060*
C16′d0.9134(6)0.1991(5)0.0517(3)0.0551(14)
H16′d0.9515060.1439970.0218150.066*
C17′d1.0078(6)0.2237(5)0.0948(3)0.0596(16)
H17′d1.1104810.1879580.0939360.071*
C18′d0.9474(6)0.3032(5)0.1401(3)0.0470(13)
F2′d1.0205(14)0.2983(12)0.1759(7)0.100(5)
C19′d0.8004(6)0.3512(5)0.1420(3)0.0538(14)
H19′d0.7603970.4015830.1740570.065*
C200.2788(6)0.5043(5)0.0984(3)0.0599(15)
H20A0.3301060.5678810.1111970.090*
H20B0.1682780.5281980.0994370.090*
H20C0.3221650.4876820.0549520.090*
C21−0.2791(4)0.8053(3)0.11528(19)0.0267(9)
C22−0.2848(6)0.9129(4)0.0781(2)0.0435(12)
H22−0.2534350.9799080.0935200.052*
C23−0.3357(6)0.9231(5)0.0189(3)0.0554(14)
H23−0.3386040.996806−0.0063660.067*
C24−0.3832(5)0.8247(5)−0.0039(2)0.0479(13)
H24−0.4167850.831225−0.0450010.057*
C25−0.3810(5)0.7199(4)0.0331(2)0.0413(11)
H25−0.4153470.6534860.0181840.050*
C26−0.3290(5)0.7095(4)0.0923(2)0.0349(10)
H26−0.3275450.6357340.1176020.042*
C31−0.0366(4)0.8671(3)0.18075(18)0.0218(8)
C320.0816(4)0.8290(3)0.13536(19)0.0264(8)
H320.0644160.7730930.1079220.032*
C330.2250(5)0.8722(3)0.1298(2)0.0296(9)
H330.3059020.8446000.0992510.036*
C340.2500(5)0.9552(3)0.1688(2)0.0310(9)
H340.3475850.9852760.1645590.037*
C350.1338(5)0.9941(4)0.2134(2)0.0332(10)
H350.1515351.0510180.2401630.040*
C36−0.0105(5)0.9507(3)0.2200(2)0.0273(9)
H36−0.0905130.9779630.2510930.033*
C41−0.0590(4)0.2464(3)0.37704(18)0.0190(7)
C42−0.1464(4)0.2436(3)0.4371(2)0.0269(9)
H42−0.1072920.2703270.4719490.032*
C43−0.2909(4)0.2016(3)0.4458(2)0.0323(10)
H43−0.3499550.1980220.4867360.039*
C44−0.3483(4)0.1650(3)0.3944(2)0.0331(10)
H44−0.4477120.1375730.4003530.040*
C45−0.2639(4)0.1678(3)0.3351(2)0.0290(9)
H45−0.3052530.1429480.3003160.035*
C46−0.1170(4)0.2072(3)0.3261(2)0.0255(8)
H46−0.0569500.2071560.2853800.031*
C510.1976(4)0.2931(3)0.43882(18)0.0193(7)
C520.2563(4)0.1807(3)0.46122(19)0.0252(8)
H520.2556850.1166040.4365640.030*
C530.3153(4)0.1616(4)0.5189(2)0.0302(9)
H530.3544550.0845410.5339670.036*
C540.3174(4)0.2546(4)0.5549(2)0.0329(10)
H540.3582560.2412350.5945490.039*
C550.2608(5)0.3660(4)0.5335(2)0.0342(10)
H550.2631300.4295570.5582580.041*
C560.2001(5)0.3861(4)0.4756(2)0.0290(9)
H560.1603410.4632740.4611320.035*
  1. aOccupancy: 0.639(8), bOccupancy: 0.361(8), cOccupancy: 0.665(9), dOccupancy: 0.335(9).

Source of material

NaOH (Merck; 0.020 g, 0.50 mmol) in water (5 mL) was added to a suspension of (Ph2P(CH2)4PPh2)(AuCl)2 (0.229 g, 0.25 mmol) in acetonitrile (20 mL), followed by the addition of MeOC(=S)N(H)C6H4F-3 (0.093 g, 0.50 mmol) [5] in acetonitrile (20 mL) and stirred for 3 h. The resulting mixture was left for slow evaporation at room temperature, yielding crystals after 3 weeks. Yield: 0.229 g (77%). M. pt (Biobase automatic melting point apparatus MP450): 410–411 K. Elemental Analysis for C44H42Au2F2N2O2P2S2 (Leco TruSpec Micro CHN Elemental Analyser): C, 44.45; H, 3.56; N, 2.36%. Found: C, 44.71; H, 3.72; N, 2.10%. IR (Bruker Vertex 70v FTIR Spectrophotometer; cm−1): 1575 (s) ν(C=N), 1122 (s) ν(C—O), 1106 (s) ν(C—S). 1H NMR (Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane in CDCl3 solution at 298 K, ppm): δ 7.58–7.41 (m, br, 20H, Ph2P), 6.95 (dt, 2H, aryl-H5, 4JHF = 6.80 Hz, 3JHH = 7.42 Hz), 6.60–6.56 (m, br, 4H, aryl-H2,6), 6.43–6.39 (m, br, 2H, aryl-H4), 3.88 (s, 6H, OCH3), 2.30 (s, br, 4H, PCH2), 1.67 (s, br, 4H, PCH2CH2). 13C{1H} NMR (as for 1H NMR): δ 165.5 (Cq), 163.1 (d, aryl-C3, 1JCF = 244.50 Hz), 152.9 (d, aryl-C1, 3JCF = 9.80 Hz), 133.2 (d, m-PC6H5, 3JCP = 13.43 Hz), 131.8 (p-PC6H5), 129.8 (d, aryl-C5, 3JCF = 9.54 Hz), 130.1 (d, i-PC6H5, 1JCP = 52.72 Hz), 129.2 (d, o-PC6H5, 2JCP = 11.09 Hz), 117.9 (d, aryl-C6, 4JCF = 2.51 Hz), 109.2 (d, aryl-C2, 2JCF = 21.95 Hz), 109.0 (d, aryl-C4, 2JCF = 21.19 Hz), 55.5 (OCH3), 27.8 (d, PCH2, 1JCP = 34.01 Hz), 26.9 (d, PCH2CH2, 2JCP = 17.70 Hz). 31P{1H} NMR (as for 1H NMR but with chemical shift referenced to 85% aqueous H3PO4 as the external reference): δ 32.9.

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.36 and 0.85 eÅ−3, respectively, were located 0.78 and 0.67 Å, from the Au2 and S2 atoms, respectively. Each of the 3-fluorophenyl rings was disordered over two co-planar orientations so the C atoms were exactly coincident but, two positions were apparent for the F atoms; the latter were refined independently. At the conclusion of the refinement, the major component of the F1- and F2-rings had a site occupancy factor of 0.639(8) and 0.665(9), respectively.

Comment

Phosphane gold(I) thioamide molecules of the general formula R3PAu[SC(OR′)=NAr] and their binuclear analogues are a well-studied class of compound [6], [7] owing, in part, to their biological activity against cancerous cells [8] and Gram-positive bacteria [9]. The compounds are relatively easy to prepare and furnish crystals readily. For example, the 3 × 3 matrix of crystals (dppb){Au[SC(OR)=NC6H4Y-4]}2 for R = Me, Et or iPr and Y = H, NO2 or Me has been studied [10]; dppb is Ph2P(CH2)4PPh2. The specific motivation for the preparation of the title binuclear dppb molecule, i.e. (dppb){Au[SC(OMe)=N(C6H4F-3)]}2 (I), with a fluorinated phenyl ring in the thiolate ligand arose from investigations into biological activity [5]. Herein, the crystal and molecular structures of (I) are described.

The molecular structure of the binuclear species in (I) is shown in the figure (50% displacement ellipsoids; the minor components of the disordered fluorophenyl rings are omitted for clarity). The Au1 atom is coordinated by thiolate-S1 [2.2933(10) Å] and phosphane-P1 [2.2552(10) Å] atoms which define a linear geometry with P1—Au1—S1 = 173.96(3)°. The equivalent parameters for the Au2 atom are Au2—S2 = 2.3097(11) Å, Au2—P2 = 2.2505(10) Å and P2—Au2—S2 = 174.67(3)°, indicating a close similarity. The mode of coordination of the thiolate ligand and the gold atom coordination geometry in (I) is as found in all previous studies [5], [6], [7], [10]. The most notable feature of the molecular structure is the relative orientation of the thiolate ligands. For the Au1 atom, the aryl ring is disposed to be proximate to the gold atom with the Au⋯Cg(C2–C7) separation being 3.70 Å. A different disposition is noted for the second thiolate ligand arising from a rotation about the C—S bond which is now orientated to place the O2 atom in close proximity to the Au2 atom with the Au2⋯O2 separation being 3.172(4) Å. While both orientations have been observed previously [7], this is the first instance where both Au⋯π and Au⋯O interactions occur within the same molecule. However, there are conformational polymorphs for specific molecules, i.e. Ph3PAu[SC(OEt)=NPh], with intramolecular Au⋯O [11] and Au⋯π [12] interactions, and for (4-tolyl)3PAu[SC(OEt)=NC6H4NO2-4] with Au⋯O [13] and Au⋯π [14] contacts; the recently determined tetrahydrofuran (1/1) solvate of this compound features an intramolecular Au⋯O contact [15]. DFT calculations suggest the Au⋯π interaction is favoured over Au⋯O by about 6 kcal/mol [16].

A detailed analysis of the molecular packing for (I) is precluded owing to the disorder in the 3-fluorophenyl rings. Weak Au⋯S contacts [Au2⋯S1i = 3.5979(10) Å for symmetry operation (i) 1 + x, −1 + y, z] connect molecules into a linear supramolecular chain along [1 −2 0]. The chains are connected into layers in the ab-plane by methylene-C—H⋯π(F-phenyl) [C12—H12b⋯Cg(C2–C7)ii = 2.66 Å with angle at H12b = 163° for (ii) 1 + x, y, z] and methyl-C—H⋯π(P-phenyl) [C8—H8b⋯Cg(C41–C46)iii = 2.70 Å with angle at H8b = 142° for (iii) −1 + x, 1 + y, z] interactions. The primary interactions between layers to consolidate the three-dimensional packing involve the disordered F atoms and are of the type C—H⋯F and F⋯π.

Acknowledgements

This research was supported by the Trans-disciplinary Research Grant Scheme (TR002-2014A) provided by the Ministry of Education, Malaysia. Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

1. Agilent Technologies. CrysAlisPRO. Agilent Technologies, Santa Clara, CA, USA (2014).Search in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

5. Yeo, C. I.; Tan, S. L.; Kwong, H. C.; Tiekink, E. R. T.: [(Z)-N-(3-Fluorophenyl)-O-methylthiocarbamato-κS]-(triphenylphosphane-κP)gold(I): crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallogr. E76 (2020) 1284–1290.10.1107/S2056989020009469Search in Google Scholar PubMed PubMed Central

6. Ho, S. Y.; Cheng, E. C.-C.; Tiekink, E. R. T.; Yam, V. W.-W.: Luminescent phosphine gold(I) thiolates: correlation between crystal structure and photoluminescent properties in [R3PAu{SC(OMe)=NC6H4NO2-4}] (R = Et, Cy, Ph) and [(Ph2P-R-PPh2){AuSC(OMe)=NC6H4NO2-4}2] (R = CH2, (CH2)2, (CH2)3, (CH2)4, Fc). Inorg. Chem. 45 (2006) 8165–8174.10.1021/ic0608243Search in Google Scholar PubMed

7. Kuan, F. S.; Ho, S. Y.; Tadbuppa, P. P.; Tiekink, E. R. T.: Electronic and steric control over Au⋯Au, C—H⋯O and C—H⋯π interactions in the crystal structures of mononuclear triarylphosphinegold(I) carbonimidothioates: R3PAu[SC(OMe)=NR′] for R = Ph, o-tol, m-tol or p-tol, and R′ = Ph, o-tol, m-tol, p-tol or C6H4NO2-4. CrystEngComm 10 (2008) 548–564.10.1039/b717198fSearch in Google Scholar

8. Ooi, K. K.; Yeo, C. I.; Mahandaran, T.; Ang, K. P.; Akim, A. M.; Cheah, Y.-K.; Seng, H.-L.; Tiekink, E. R. T.: G2/M cell cycle arrest on HT-29 cancer cells and toxicity assessment of triphenylphosphanegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh], R = Me, Et, and iPr, during zebrafish development. J. Inorg. Biochem. 166 (2017) 173–181.10.1016/j.jinorgbio.2016.11.008Search in Google Scholar PubMed

9. Yeo, C. I.; Sim, J.-H.; Khoo, C.-H.; Goh, Z.-J.; Ang, K.-P.; Cheah, Y.-K.; Fairuz, Z. A.; Halim, S. N. B. A.; Ng, S. W.; Seng, H.-L.; Tiekink, E. R. T.: Pathogenic Gram-positive bacteria are highly sensitive to triphenylphosphanegold(O-alkylthiocarbamates), Ph3PAu[SC(OR)=N(p-tolyl)] (R = Me, Et and iPr). Gold Bull. 46 (2013) 145–152.10.1007/s13404-013-0091-zSearch in Google Scholar

10. Ho, S. Y.; Tiekink, E. R. T.: Supramolecular aggregation patterns in the crystal structures of the dinuclear phosphinegold(I) thiolates, [(Ph2P(CH2)4PPh2){AuSC(OR)=NC6H4Y-4}2] for R = Me, Et or iPr and Y = H, NO2 or Me: the influence on intermolecular interactions exerted by R and Y. CrystEngComm 9 (2007) 368–378.10.1039/B700295ESearch in Google Scholar

11. Hall, V. J.; Tiekink, E. R. T.: Crystal structure of triphenylphosphine(N-phenyl-O-ethylthiocarbamato)gold(I), (C6H5)3PAu(SC(=NPh)OEt). Z. Kristallogr. Cryst. Mater. 203 (1993) 313–315.10.1524/zkri.1993.203.Part-2.313Search in Google Scholar

12. Yeo, C. I.; Tan, S. L.; Otero-de-la-Roza, A.; Tiekink, E. R. T.: A conformational polymorph of Ph3PAu[SC(OEt)=NPh] featuring an intramolecular Au⋯π interaction. Z. Kristallogr. Cryst. Mater. 231 (2016) 653–661.10.1515/zkri-2016-1988Search in Google Scholar

13. Kuan, F. S.; Jotani, M. M.; Tiekink, E. R. T.: New monoclinic form of {O-ethyl N-(4-nitrophenyl)thiocarbamato-κS}-(tri-4-tolylphosphane-κP)gold(I): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E74 (2017) 1465–1471.10.1107/S2056989017012865Search in Google Scholar

14. Broker, G. A.; Tiekink, E. R. T.: [O-Ethyl N-(4-nitrophenyl)thiocarbamato-κS](tri-p-tolylphosphine-κP)gold(I). Acta Crystallogr. E64 (2008) m1582.10.1107/S1600536808038257Search in Google Scholar PubMed PubMed Central

15. Kuan, F. S.; Tiekink, E. R. T.: Crystal structure of [O-ethyl N-(4-nitrophenyl)thiocarbamato-κS](tri-4-tolylphosphine-κP)gold(I) tetrahydrofuran solvate, C30H30AuN2O3PS, C4H8O. Z. Kristallogr. NCS 235 (2020) 1267–1269.10.1515/ncrs-2020-0318Search in Google Scholar

16. Yeo, C. I.; Khoo, C.-H.; Chu, W.-C.; Chen, B.-J.; Chu, P.-L.; Sim, J.-H.; Cheah, Y.-K.; Ahmad, J.; Halim, S. N. A.; Seng, H.-L.; Ng, S. W.; Otero-de-la-Roza, A.; Tiekink, E. R. T.: The importance of Au⋯π(aryl) interactions in the formation of spherical aggregates in binuclear phosphanegold(I) complexes of a bipodal thiocarbamate dianion: A combined crystallographic and computational study, and anti-microbial activity. RSC Adv. 5 (2015) 41401–41411.10.1039/C5RA05604GSearch in Google Scholar

Received: 2020-07-14
Accepted: 2020-08-12
Published Online: 2020-08-21
Published in Print: 2020-10-27

©2020 Chien Ing Yeo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2020-0353/html
Scroll to top button