Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 6, 2015

State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength

  • Png Ching Eng EMAIL logo , Sun Song and Bai Ping
From the journal Nanophotonics

Abstract

Photodetectors hold a critical position in optoelectronic integrated circuits, and they convert light into electricity. Over the past decades, high-performance photodetectors (PDs) have been aggressively pursued to enable high-speed, large-bandwidth, and low-noise communication applications. Various material systems have been explored and different structures designed to improve photodetection capability as well as compatibility with CMOS circuits. In this paper, we review state-of-theart photodetection technologies in the telecommunications spectrum based on different material systems, including traditional semiconductors such as InGaAs, Si, Ge and HgCdTe, as well as recently developed systems such as low-dimensional materials (e.g. graphene, carbon nanotube, etc.) and noble metal plasmons. The corresponding material properties, fundamental mechanisms, fabrication, theoretical modelling and performance of the typical PDs are presented, including the emerging directions and perspectives of the PDs for optoelectronic integration applications are discussed.

References

[1] Jalali B., Paniccia M., Reed G., Silicon photonics, IEEE Microw. Mag. 2006, 7, 58-68.Search in Google Scholar

[2] Wang J., Lee S.J., Ge-Photodetectors for Si-Based Optoelectronic Integration, Sensors. 2011, 11, 696-718.Search in Google Scholar

[3] Pavesi L., Guillot G., Optical Interconnects: The Silicon Approach (Springer Series in Optical Sciences), New York: Springer 2006.10.1007/978-3-540-28912-8Search in Google Scholar

[4] Keiser G., Optical Fiber Communications, Encyclopedia of Telecommunications, John Wiley & Sons, 2003.10.1002/0471219282.eot158Search in Google Scholar

[5] Jalali B., Yegnanarayanan S., Yoon T., Yoshimoto T., Rendina I., Coppinger F., Advances in silicon-on-insulator optoelectronics, IEEE J. Sel. Topics Quantum Electron. 1998, 4, 938-947.Search in Google Scholar

[6] Schaub J.D., Li R., Csutak S.M., Campbell J.C., High-speed monolithic silicon photoreceivers on high resistivity and SOI substrates, J. Lightw. Tech. 2001, 19, 272-278.Search in Google Scholar

[7] Casalino M., Near-Infrared Sub-Bandgap All-Silicon Photodetectors: A Review, International Journal of Optics and Applications, 2012, 2, 1-16.10.5923/j.optics.20120201.01Search in Google Scholar

[8] Baker R.J., CMOS: Circuit Design, Layout, and Simulation, 3rd ed. John Wiley& Sons, Hoboken, New Jersey, USA, 2011.10.1002/9780470891179Search in Google Scholar

[9] Wanlass F.M., View M., Calif., Low Stand-by power complementary field effect circuitry, US patent 3, 356, 858, 1963.Search in Google Scholar

[10] Rogalski A., Infrared detectors: status and trends, Prog. Quant. Electron. 2003, 27, 59-210.Search in Google Scholar

[11] Libertino S., Coffa S., Benton J.L., Halliburton K., Eaglesham D.J., Formation, evolution and annihilation of interstitial clusters in ion-implanted Si, Phys. Rev. B 2001, 63, 195206:1-14.10.1103/PhysRevB.63.195206Search in Google Scholar

[12] Liu Y., Forrest S.R., Hladky J., Lange M.J.,Olsen G.H., Ackley D.E., A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction, IEEE J. Lightw. Technol. 1992, 10, 182-193.Search in Google Scholar

[13] Elliott C.T., Day D.,Wilson B.J., An integrating detector for serial scan thermal imaging, Infrared Phys. 1982, 22, 31-42.Search in Google Scholar

[14] Bonaccorso F., Sun Z., Hasan T., Ferrari A.C., Graphene photonics and optoelectronics, Nat. Photon. 2010, 4, 611-622.Search in Google Scholar

[15] Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K., The electronic properties of graphene, Rev. Mod. Phys. 2009, 81, 109-162.Search in Google Scholar

[16] Bachino S.M., Strano M.S., Kittrel C., Hauge R.H., Smalley R.E., Weisman R.B., Structure-Assigned optical spectra single-walled carbon nanotubes, Science 2002, 298, 2361-2366.10.1126/science.1078727Search in Google Scholar PubMed

[17] Wang F., Dukovic G., Brus L.E., Heinz T.F., The optical resonances in carbon nanotubes arise from excitons, Science 2005, 308, 838-841.10.1126/science.1110265Search in Google Scholar PubMed

[18] Avouris P., Freitag M., Perebeinos V., Carbon-nanotube photonics and optoelectronics, Nat. Photon. 2008, 2, 341-350.Search in Google Scholar

[19] Kang Y.K., Liu H.D., Morse M., Paniccia M.J., Zadka M., Litski S., Sarid G., Pauchard A., Kuo Y.H., Chen H.W., Zaoui W.S., Bowers J.E., Beling A., McIntosh D.C., Zheng X.H., Campell J.C., Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product, Nat. Photon. 2009, 3, 59-63.Search in Google Scholar

[20] Ren F.F., Ang K.W., Song J.F., Fang Q., Yu M.B., Lo G.Q., Kwong D.L., Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector, Appl. Phys. Lett. 2010, 97, 091102.Search in Google Scholar

[21] Goykhman I., Desiatov B., Khurgin J., Shappir J., Levy U., Locally Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime, Nano Lett. 2011, 11(6), 2219-2224.Search in Google Scholar

[22] Novotny L., Hulst N.V., Antennas for light, Nat. Photon. 2011, 5, 83-90.Search in Google Scholar

[23] Tang L., Kocabas S.E., Latif S., Okyay A.K., Ly-Gagnon D.S., Saraswat K.C., Miller D.A.B., Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna, Nat. Photon. 2008, 2, 226-229.Search in Google Scholar

[24] Kaniewski J., Piotrowski J., InGaAs for infrared photodetectors, Physics and technology, Opto-electron. Rev. 2004, 12, 139-148.Search in Google Scholar

[25] Olsen G.H., Cohen M.J., Applications of near-infrared imaging, Proc. SPIE 1998, 3379, 300-306.10.1117/12.317597Search in Google Scholar

[26] Olsen G.H., Lange M.J., Cohen M.J., Kim D.S., Forrest S.R., Threeband 1.0-2.5 um near-infrared InGaAs detector array, Proc. SPIE 1994, 2235, 151-159.10.1117/12.179693Search in Google Scholar

[27] Gyuro I., MOVPE for InP-based optoelectronic device application, III-Vs Rev. 1996, 9, 30-35.Search in Google Scholar

[28] Roelkens G., Brouckaert J., Thourhout D.V., Baets R., Notzel R., Smit M., Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits, Opt. Express 2005, 13, 10102-10108.10.1364/OPEX.13.010102Search in Google Scholar

[29] Roelkens G., Thourhout D.V., Baets R., Notzel R., Smit M., Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit, Opt. Express 2006, 14, 8184-8159.10.1364/OE.14.008154Search in Google Scholar PubMed

[30] Periner E., Guttzeit A., Wehmann H.H., The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III-V compound semiconductors on silicon, J. Phys. Condens. Matter 2002, 14, 13195-13201.10.1088/0953-8984/14/48/368Search in Google Scholar

[31] Sun Y.T., Baskar K., Lourdudoss S., Thermal strain in indium phosphide on silicon obtained by epitaxial lateral growth, J. Appl. Phys. 2003, 94, 2746-2748.Search in Google Scholar

[32] Mi Z., Yang J., Bhattacharya P., Chan P.K.L., Pipe K.P., High Performance self-organized In(Ga)As quantumdot lasers monolithically grown on silicon, Proc. SPIE 2006, 6125, 612506.10.1117/12.644289Search in Google Scholar

[33] Seo S.W., Cho S.Y., Huang S., Shin J.J., Jokerst N.M., Brown A.S., Brooke M.A., High-speed large area inverted InGaAs thin-film metal-semiconductor-metal photodetector, IEEE J. Sel. Topics Quantum Electron. 2004, 10, 686-693.Search in Google Scholar

[34] Sheng Z., Liu L., Brouckaert J., He S., Throurhout D.V., InGaAs PIN photodetectors integrated on silicon-on-insulator waveguide, Opts. Express 2010, 18, 1756-1761.10.1364/OE.18.001756Search in Google Scholar PubMed

[35] Brouckaert J., Roelkens G., Thourhout D.V., Baets R., Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs, J. Lightw. Technol. 2007, 25, 1053-1060.Search in Google Scholar

[36] Maruyama T., Okumura T., Arai S., Direct wafer bonding of GaInAsP/InP membrane structure on silicon-on-insulator substrate, Jpn. J. Appl. Phys. 2006, 45, 8717-8718.Search in Google Scholar

[37] Roelkens G., Brouckaert J., Thourhout D.V., Baets R., Notzel R., Smit M., Adhesive Bonding of InP/InGaAsP dies to process silicon-on-insulator wafers using DVS-bis-benzocyclobutene, J. Electronchem. Soc. 2006, 153, G1015-G1019.Search in Google Scholar

[38] Feng S.Q., Geng Y., Lau K.M., Poon A.W., Epitaxial III-V-on-silicon waveguide butt-coupled photodetectors, Optics Letters 2002, 37, 4035-4037.10.1364/OL.37.004035Search in Google Scholar PubMed

[39] Effenberger F.J., Joshi A.M., Ultrafast, Dual-Depletion Region, InGaAs/InP p-i-n detector, J. Lightw. Technol. 1996, 14, 1859-1864.Search in Google Scholar

[40] Dentai A.G., Kuchibhotla R., Campbell J.C., Tsai C., Lei C., High quantum eflciency long-wavelength InP/InGaAs microcavity photodiode, Electron. Lett. 1991, 27, 2125-2127.Search in Google Scholar

[41] Kjellman J.O., Sugiyama M., Nakano Y., Near-infrared electroluminescence and photo detection in InGaAs p-i-n microdisks grown by selective area growth on silicon, Appl. Phys. Lett. 2014, 104, 241103-241105.Search in Google Scholar

[42] Julian B.D., Schumacher H., InGaAs Metal-Semiconductor-Metal Photodetectors for Long wavelength Optical Communications, IEEE J. Quantum Electron. 1991, 27, 737-752.Search in Google Scholar

[43] Schumacher H., LeBlanc H.P., Scoole J., Bhat R., An investigation of the optoelectronic response of GaAs/InGaAs MSM photodetectors, IEEE Electron. Devices Lett. 1988, 9, 607-609.Search in Google Scholar

[44] Kikuchi T., Ohno H., Hasegawa H., In0.53Ga0.47As metalsemiconductor- metal photodiodes using a lattice mismatched AlGaAs Schottky assist layer, Electron. Lett. 1988, 24, 1208-1210.Search in Google Scholar

[45] Scoole J.B.D., Schumacher H., LeBlanc H.P., Bhat R., Koza M.A., High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5 μmand 1.3 μmwavelengths, IEEE Photon. Technol. Lett. 1989, 1, 250-252.Search in Google Scholar

[46] Griem H.T., Ray S., Freeman J.L., West D.L., Long-wavelength (1.0-1.6 μm) In0.52Al0.48As/In0.53(GaxAl1−x)0.47As/In0.53Ga0.47As metalsemiconductor- metal photodetector, Appl. Phys. Lett. 1990, 56, 1067-1068.Search in Google Scholar

[47] Kim J.H., Griem H.T., Friedman R.A., Chan E.Y., Ray S., Highperformance back-illuminated InGaAs/InAlAsMSMphotodetectorwith a record responsivity of 0.96A/W, IEEE Photon. Technol. Lett. 1992, 4, 1241-1244.Search in Google Scholar

[48] Onat B.M., Gokkavas M., Ozbay E., Ata E.P., Towe E., Unlu M.S., 100-GHz resonant cavity enhanced Schottky photodiodes, IEEE Photon. Technol. Lett. 1998, 10, 707-709.Search in Google Scholar

[49] Ohira K., Kobayashi K., Iizuka N., Yoshida H., Ezaki M., Uemura H., Kojima A., Nakamura K., Furuyama H., Shibata H., On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide, Opt. Express 2010, 18, 15440-15447.10.1364/OE.18.015440Search in Google Scholar PubMed

[50] Cheng Y.P., Ikku Y., Takenaka M., Takagi S., InGaAs MSM photodetector monolithically integrated with InP photonic-wire waveguide on III-V CMOS, IEICE Electronic Express 2014, 11, 1-8.10.1587/elex.11.20140609Search in Google Scholar

[51] Othman M.A., Taib S.N., Husain M.N., Napiah Z.A.F.M., Reviews on avalanche photodiode for optical communication technology, APRN Journal of Engineering and Applied Sciences 2014, 9, 35-44.Search in Google Scholar

[52] Biber A., Seitz P., Jackel H., Avalanche Photodiode image Sensor in Standard BiCMOS Technology, IEEE Trans. Electron Devices 2000, 47, 2241-2243.10.1109/16.877191Search in Google Scholar

[53] Campbell J.C., Recent Advances in Telecommunications Avalanche Photodiodes, J. Lightw. Technol. 2007, 25, 109-121.Search in Google Scholar

[54] Hyun K.S., Paek Y., Kwon Y.H., Yun I., Lee E.H., High Speed and High Reliability InP/InGaAs Avalanche Photodiode for Optical Communications, Proc. SPIE. 2003, 130-137.10.1117/12.479551Search in Google Scholar

[55] Kuchigbotla R., Campell J.C., Tsai C., Tsang W.T., Choa F.S., Delta-doped SAGMavalanche photodiodes, IEEE Trans. Electron Devices 1991, 38, 2705-2706.10.1109/16.158729Search in Google Scholar

[56] Watanabe I., Sugou S., Ishikawa H., Anan T., Makita K., Tsuji M., Taguchi K., High-speed and low-darkcurrent flip-chip In- AlAs/InAlGaAs quaternary well superlattice APDs with 120 GHz gain-bandwidth product, IEEE Photon. Technol. Lett. 1993, 5, 675-677.Search in Google Scholar

[57] Ackley D.E., Hladky J., Lange M.J., Mason S., Erickson G., Olsen G.H., Ban V.S., Liu Y., Forrest S.R., InGaAs/InP floating guard ring avalanche photodiodes fabricated by double diffusion, IEEE Photo. Technol. Lett. 1990, 2, 571-573.Search in Google Scholar

[58] Huang J., Banerjee K., Ghosh S., Hayat M.M., Dual-carrier High-Gain Low-noise Superlattice Avalanche Photodiodes, IEEE Trans. Electron Devices 2013, 60, 2296-2302.10.1109/TED.2013.2264315Search in Google Scholar

[59] Tarof L.E., Knight D.G., Fox K.E., Miner C.J., Puetz N., Kim H.B., Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery, Appl. Phys. Lett. 1990, 57, 670-672.Search in Google Scholar

[60] Nada M., Yokoyama H.,Muramoto Y., Ishibashi T.,Matsuzaki H., 50-Gbit/s vertical illumination avalanche photodiode for 400- Gbit/s Ethernet systems, Opt. Express 2014, 22, 14681-14687.10.1364/OE.22.014681Search in Google Scholar PubMed

[61] Valivarthi R., Lucio-Martinez I., Rubenok A., Chan P., Marsili F., Verma V.B., Shaw M.D., Stern J.A., Slater J.A., Oblak D., Nam S.W., Tittel W., Eflcient Bell state analyzer for time-bin qubits with fast-recovery Wsi superconducting single photon detectors, Opt. Express 2014, 22, 24497-24506.10.1364/OE.22.024497Search in Google Scholar PubMed

[62] Michel J., Liu J.F., Kimerling L.C., High-performance Ge-on-Si Photodetectors, Nat. Photon. 2010, 4, 527-534.Search in Google Scholar

[63] Luryi S., Kastalsky A., Bean J.C., New infrared detector on a silicon chip, IEEE Trans. Electron. Dev. 1984, ED-31, 1135-1139.Search in Google Scholar

[64] Fitzgerald E.A., Dislocations in strained-layer epitaxy - theory, experiment, and applications, Mater. Sci. Rep. 1991, 7, 87-140.Search in Google Scholar

[65] Samavedam S.B., Currie M.T., Langdo T.A., Fitzgerald E.A., High-quality germaniumphotodiodes integrated on silicon substrates using optimized relaxed graded buffers, Appl. Phys. Lett. 1998, 73, 2125-2127.Search in Google Scholar

[66] Isaacson D.M., Dohrman C.L., Fitzgerald E.A., Deviations from ideal nucleation-limited relaxation in high-Ge content compositionally graded SiGe/Si, J. Vac. Sci. Technol. B 2006, 24, 2741-2747.10.1116/1.2366584Search in Google Scholar

[67] Baribeau J.M., Jackman T.E., Houghton D.C., Maigne P., Denhoff M.W., Growth and characterization of Si1−xGex and Ge epilayers on (100) Si, J. Appl. Phys. 1988, 63, 5738-5746.Search in Google Scholar

[68] Luan H.C., Lim D.R., Lee K.K., Chen K.M., Sandland J.G.,Wada K., Kimerling L.C., High-quality Ge epilayers on Si with low threading dislocation densities, Appl. Phys. Lett. 1999, 75, 2909-2911.Search in Google Scholar

[69] Ishikawa Y., Wada K., Cannon D.D., Liu J.F., Luan H.C., Kimerling L.C., Strain-induced band gap shrinkage in Ge grown on Sisubstrate, Appl. Phys. Lett. 2003, 82, 2044-2046.Search in Google Scholar

[70] Liu J.F., Cannon D.D., Wada K., Ishikawa Y., Danielson D.T., Jongthammanurak S., Michel J., Kimerling L.C., Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100), Phys. Rev B 2004, 70, 155309.10.1103/PhysRevB.70.155309Search in Google Scholar

[71] Liu J.F., Cannon D.D., Wada K., Ishikawa Y., Jongthammanurak S., Danielson D.T., Michel J., Kimerling L.C., Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications, Appl. Phys. Lett. 2005, 87, 011110.Search in Google Scholar

[72] Fang Y.Y., Tolle J., Roucka R., Chizmeshya A.V.G., Kouvetakis J., Dcosta V.R., Menendez J., Perfectly tetragonal, tensile-strained Ge on Ge1−ySny buffered Si(100), Appl. Phys. Lett. 2007, 90, 061915.Search in Google Scholar

[73] Takeuchi S., Shimura Y., Nakatsuka O., Zaima S., Ogawa M., Sakai A., Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method, Appl. Phys. Lett. 2008, 92, 231916.Search in Google Scholar

[74] Nayfeh A., Chui C.O., Saraswat K.C., Yonehara T., Effects of hydrogenannealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality, Appl. Phys. Lett. 2004, 85, 2815-2817.Search in Google Scholar

[75] Huang Z.H., Oh J., Campbell J.C., Back-side-illuminated highspeed Ge photodetector fabricated on Si substrate using thin SiGe buff erlayers, Appl. Phys. Lett. 2004, 85, 3286-3288.Search in Google Scholar

[76] Osmond J., Isella G., Kaufmann R., Acciarri M., Kanel H.V., Ultralow dark current Ge/Si(100) photodiodes with low thermal budget, Appl. Phys. Lett. 2009, 94, 201106.Search in Google Scholar

[77] Liu J.F., Michel J., Giziewicz W., Pan D., Wada K., Cannon D.D., Jongthammanurak S., Danielson D.T., Kimerling L.C., Chen J., Ilday F.O., Kartner F.C., Yasaitis J., High-performance, tensilestrained Ge p-i-n photodetectors on a Si platform, Appl. Phys. Lett. 2005, 87, 103501.Search in Google Scholar

[78] Dosunmu O.I., Cannon D.D., Emsley M.K., Kimerling L.C., Unlu M.S., High speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550 nm operation, IEEE Photon. Technol. Lett. 2005, 17, 175-177.Search in Google Scholar

[79] Ahn D., Hong C.Y., Liu J.F., GiziewiczW., Beals M., Kimerling L.C., Michel J., Chen J., Kartner F.X., High performance, waveguide integrated Ge photodetectors, Opt. Express 2007, 15, 3916-3921.10.1364/OE.15.003916Search in Google Scholar PubMed

[80] Feng D., Liao S.R., Dong P., Feng N.N., Liang H., Zheng D.W., Kung C.C., Fong J., Shafiiha R., Cunningham J., Krishnamoorthy A.V., Asghari M., High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide, Appl. Phys. Lett. 2009, 95, 261105.Search in Google Scholar

[81] Vivien L., Osmond J., Fedeli J.M., Marris-Morini D., Crozat P., Damlencourt J.F., Cassan E., Lecunff Y., Laval S., 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide, 2009, 17, 6252-6257.10.1364/OE.17.006252Search in Google Scholar PubMed

[82] Beals M., Michel J., Liu J.F., Ahn D.H., Sparacin D., Sun R., Hong C.Y., Kimerling L.C., Pomerene A., Carothers D., Beattie J., Kopa A., Apsel A., Rasra M.S., Gill D.M., Patel S.S., Tu K.Y., Chen Y.K., White A.E., Process flow innovations for photonic device integration in CMOS, Proc. SPIE. 2008, 6898, 689804.Search in Google Scholar

[83] Zhang D.L., Xue C.L., Cheng B.W., Su S.J., Liu Z., Zhang X., Zhang G.Z., Li C.B.,Wang Q.M., High-responsivity GeSn short-wave infrared p-i-n photodetectors, Appl. Phys. Lett. 2013, 102, 1411110.1063/1.4801957Search in Google Scholar

[84] Tseng H.H., Li H., Mashanov V., Yang Y.J., Cheng H.H., Chang G.E., Soref R.A., Sun G., GeSn-based p-i-n photodiodes with strained active layer on a Si wafer, Appl. Phys. Lett. 2013, 103, 231907.Search in Google Scholar

[85] Rouviere M., Vivien L., Roux Le X., Mangeney J., Crozat P., Hoarau C., Cassan E., Pascal D., Laval S., Fedeli J.M., Damlencourt J.F., Hartmann J.M., Kolev S., Ultrahigh speed germanium-onsilicon- on-insulator photodetectors for 1.31 and 1.55 μm operation, Appl. Phys. Lett. 2005, 87, 231109.Search in Google Scholar

[86] Oh J., Banerjee S.K., Campell J.C., Metal-germanium-metal photodetectors on heteroepitaxial Ge-on-Si with amorphous Ge Schottky barrier enhancement layers, IEEE Photon. Technol. Lett. 2004, 16, 581-583.Search in Google Scholar

[87] Laih L.H., Chang T.C., Chen Y.A., TsayW.C., Hong J.W., Characteristics of MSM photodetectors with trench electrodes on P-type Si wafer, IEEE Trans. Electron. Device. 1998, 45, 2018-2023.Search in Google Scholar

[88] Ang K.W., Zhu S.Y., Wang J., Chua K.T., Yu M.B., Lo G.Q., Kwong D.L., Novel Silicon-Carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors, IEEE Electron Dev. Lett. 2008, 7, 704-707.Search in Google Scholar

[89] Ang K.W., Zhu S.Y., Yu M.B., Lo G.Q., Kwong D.L., High- PerformanceWaveguide Ge-on-SOI metal-semiconductor-metal photodetectorswith novel silicon-carbon (Si:C) Schottky barrier enhancement layer, IEEE Photon. Technol. Lett. 2008, 29, 754-756.Search in Google Scholar

[90] Zhang H., Lee S.J., Loh W.Y., Wang J., Chua K.T., Yu M.B., Cho B.J., Lo G.Q., Kwong D.L., Dark-current suppression in metalgermanium- metal photodetectors through dopant-segregation in NiGe-Schottky barrier, IEEE Electron Dev. Lett. 2008, 29. 161-164.10.1109/LED.2007.914095Search in Google Scholar

[91] Ang K.W., Zhu S.Y., Wang J., Chua K.T., Yu M.B., Lo G.D., Kwong D.L., Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur co-implantation and segregation, IEEE Electron Dev. Lett. 2008, 29, 704-707.Search in Google Scholar

[92] Harris N.C., Baehr J.T., Lim A.E.J., LiowT.Y., Lo G.D., Hochberg M., Noise Characterization of a waveguide-coupled MSM photodetector exceeding unity quantum eflciency, IEEE J. Lighw. Technol. 2013, 31, 23-27.Search in Google Scholar

[93] People R., Physics and applications of GexSi1−x/Si strainedlayer heterostructures, IEEE J. Quantum Electron. 2003, 22, 1696-1710.Search in Google Scholar

[94] Pearsall T.P., Temkin H., Bean J.C., Luryi S., Avalanche gain in GexSi1−x/Si infrared waveguide detectors, IEEE Electron Dev. Lett. 2005, 7, 330-332.Search in Google Scholar

[95] Assefa S., Xia F.N., Vlasov Y.A., Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects, Nature 2010, 464, 80-84.10.1038/nature08813Search in Google Scholar PubMed

[96] Shim J., Kang D.H., Yoo G.W., Hong S.T., Jung W.S., Kuh B.J., Lee B., Shin D., Ha K., Kim G.S., Yu H.Y., Baek J.W., Park J.H., Germanium p-i-n avalanche photodetector fabricated by point defect healing process, Opt. Lett. 2014, 39, 4204-4207.Search in Google Scholar

[97] Virot L., Crozat P., Fedeli J.M., Hartmann J.M., Morini D.M., Eric C., Boeuf F., Vivien L., Germanium avalanche receiver for low power interconnects, Nat. Commun. 2014, 4, 4957.Search in Google Scholar

[98] Kim I.G., Jang K.S., Joo J., Kim S.H., Kim S.G., Choi K.W., Oh J.H., Kim S.A., Lim G.G., High-performance photoreceivers based on vertical-illumination type Ge-on-Si photodetectors operating up to 43 Gb/s at λ ~1550 nm, Opt. Express 2013, 21, 30716-30723.10.1364/OE.21.030716Search in Google Scholar

[99] Chatterjee A., Mongkolkachit P., Bhuva B., Verma A., All Si- Based Optical Interconnect for Interchip Signal Transmission, IEEE Photon. Technol. Lett. 2003, 15, 1663-1666.Search in Google Scholar

[100] Fan H.Y., Ramdas A.K., Infrared Absorption and Photoconductivity in Irradiated Silicon, J. Appl. Phys. 1959, 30, 1127-1134.Search in Google Scholar

[101] Wertheim G.K., Energy Levels in electron-bombarded silicon, Phys. Rev. 1957, 105, 1730-1736.Search in Google Scholar

[102] Wetheim G.K., Neutron-Bombardment Damage in Silicon, Phys. Rev. 1958, 111, 1500-1505.Search in Google Scholar

[103] Geis M.W., Spector S.J., Grein M.E., Schulein R.T., Yoon J.U., Lennon D.M., Wynn C.M., Palmacci S.T., Gan F., Kartner F.X., Lyszczarz T.M., All silicon infrared photodiodes: Photo response and effects of processing temperature, Opt. Express 2007, 15, 16886-16895.10.1364/OE.15.016886Search in Google Scholar

[104] Knights A., House A., MacNaughton R., Hopper F., Optical power monitoring function compatible with single chip integration on silicon-on-insulator, Proc. Of conference on Optical fiber Communication, Technical Digest Series 2003, 2, 705-706.10.1109/OFC.2003.316152Search in Google Scholar

[105] Knights A.P., Bradley J.D., Gou S.H., Jessop P.E., Silicon-oninsulator waveguide photodetector with self-ion-implantationengineered enhanced infrared response, J. Vac. Sci. Technol. A 2006, 24, 783-786.10.1116/1.2167975Search in Google Scholar

[106] Giri P.K., Mohapatra Y.N., Thermal stability of defect complexes due to high does MeV implantation in silicon, Mater. Sci. Eng. 2000, 71, 327-332.Search in Google Scholar

[107] Almeida V.R., Barrios C.A., Panepucci R.R., Lipson M., Foster M.A., Ouzonnov D.G., Gaeta A.L., L-optical switching on a silicon chip, Opt. Lett. 2004, 29, 2867-2869.Search in Google Scholar

[108] Doylend J.K., Jessop P.E., Knights A.P., Silicon photonic resonator-enhanced defect-mediated photodiode for subbandgap detection, Opt. Express 2010, 18, 14671-14678.10.1364/OE.18.014671Search in Google Scholar

[109] Geis M.W., Spector S.J., Grein M.E., Yoon J.U., Lennon D.M., Lyszczarz T.M., Silicon waveguide infrared photodiodes with > 35 GHz bandwidth and phototransistors with 50 A/W response, Opt. Express 2009, 17, 5193-5204.10.1364/OE.17.005193Search in Google Scholar

[110] Grote R.R., Padmaraju K., Bergman K., 10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55 um, IEEE Photon. Technol. Lett. 2013, 25, 67-71.Search in Google Scholar

[111] Crouch C.H., Carey J.E., Shen M., Mazur E., Genin F.Y., Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation, Appl. Phys. A 2004, 79, 1635-1641.10.1007/s00339-004-2676-0Search in Google Scholar

[112] Wu C., Crouch C.H., Zhao L., Carey J.E., Younkin R., Levinson J.A., Mazur E., Farrell R.M., Gothoskar P., Karger A., Near-unity below-band gap absorption by microstructured silicon, Appl. Phys. Lett. 2001, 78, 1850-1852.Search in Google Scholar

[113] Allen F.C., Gobeli G.W., Work Function, photoelectric threshold, and surface states of atomically clean silicon, Phys. Rev. 1962, 127, 150-158.Search in Google Scholar

[114] Chiarotti G., Nannarone S., Chiaradia P., Optical Absorption of Surface States in Ultrahigh VacuumCleaved (111) Surfaces of Ge and Si. Phys. Rev. B 1971, 4, 3398-3402.10.1103/PhysRevB.4.3398Search in Google Scholar

[115] Chiarotti G., Del Signore G., Nannarone S., Optical Detection of Surface States on Cleaved (111) surfaces of Ge. Phys. Rev. Lett. 1968, 21, 1170-1172.Search in Google Scholar

[116] Baehr-Jones T., Hochberg M., Scherer A., Photodetection in silicon beyond the band edge with surface states, Opt. Express 2008, 16, 1659-1668.10.1364/OE.16.001659Search in Google Scholar

[117] Chen H., Luo X., Poon A.W., Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator, Appl. Phys. Lett. 2009, 95, 171111-171113.Search in Google Scholar

[118] Bortolani V., Calandra C., Sghedoni A., Surface states in Si. Phys. Letters A 1971, 34, 193-194.10.1016/0375-9601(71)90823-1Search in Google Scholar

[119] Kosonocky W.F., Shallcross F.V., Villani T.S., 160 × 244 element PtSi Schottky-barrier IR-CCD image sensor, IEEE Trans. Electron Dev. 1985, ED-32(8), 1564.Search in Google Scholar

[120] Casalina M., Sirleto L., Moretti L., Della Corte F., Rendina I., Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um, J. Opts. A: Pure and applied optics 2006, 8, 909-913.10.1088/1464-4258/8/10/013Search in Google Scholar

[121] Casalino M., Sirleto L., Moretti L., Rendina I., A silicon compatible resonant cavity enhanced photodetector at 1.55 um, Semicond. Sci. Technol. 2008, 23, 075001:1-7.Search in Google Scholar

[122] Elabd H., Villani T., Kosonocky W.F., Palladium-silicide Schottky-Barrier IR-CCD for SWIR applications at intermediate temperatures, IEEE Trans. Electron Dev. Lett. 1982, EDL-3, 89-90.Search in Google Scholar

[123] Lee M.K., Chu C.H., Wang Y.H., 1.55 um and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector, Opt. Lett. 2001, 26, 160-162.Search in Google Scholar

[124] Casalino M., Sirleto L., Iodice M., Safloti N., Gioffre M., Rendina I., Coppola G., Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide, Appl. Phys. Lett. 2010, 96, 241112-241114.Search in Google Scholar

[125] Zhu S., Lo G.Q., Kwong D.L., Low-cost and high gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection, Appl. Phys. Lett. 2008, 93, 071108.Search in Google Scholar

[126] Zhu S., Lo G.Q., Kwong D.L., Low-cost and High-Speed SOI Waveguide-Based Silicide Schottky-Barrier MSM Photodetectors for Broadband Optical Communications, IEEE Photon. Technol. Lett. 2008, 20, 1396-1398.Search in Google Scholar

[127] Zhu S., Yu M.B., Lo G.Q., Kwong D.L., Near-infrared waveguidebased nickel silicide Schottky-barrier photodetector for optical communications, Appl. Phys. Lett. 2008, 92, 081103.Search in Google Scholar

[128] Boggess T.F., Bohnert K.M., Mansour K., Moss S.C., Boyd I.W., Smirl A.L., Simultaneous measurement of two-photon coeflcient and free-carrier cross section above the bandgap of crystalline silicon, IEEE J. Quantum Electron. 1986, 22, 360-368.Search in Google Scholar

[129] Reintjes J.F., McGroddy J.C., Indirect two-photon transition in Si at um. Phys. Rev. Lett. 1973, 30, 901-903.Search in Google Scholar

[130] Dinu M., Quochi F., Garcia H., Third-order nonlinearities in silicon at telecom wavelengths, Appl. Phys. Lett. 2003, 82, 2954-2956.Search in Google Scholar

[131] Cowan A.R., Rieger G.W., Young J.F., Nonlinear transmission of 1.5 um pulses through single-mode silicon-on-insulator waveguide structures, Opt. Express 2004, 12, 1611-1621.10.1364/OPEX.12.001611Search in Google Scholar

[132] Liang T.K., Tsang H.K., Day I.E., Drake J., Knights A.P., Asghari M., Siliconwaveguide two-photon absorption detector at 1.5 um wavelength for autocorrelationmeasurements, Appl. Phys. Lett. 2002, 81, 1323-1325.Search in Google Scholar

[133] Tanabe T., Nishiguchi K., Kuramochi E., Notomi M., Low power and fast elecro-optic silicon modulatorwith lateral p-i-n embedded photonic crystal nanocavity, Opt. Express 2009, 17, 22505-22513.10.1364/OE.17.022505Search in Google Scholar

[134] Chen H., Poon A.W., Two-photon absorption photocurrent in pi- n diode embedded silicon microdisk resonantors, Appl. Phys. Lett. 2010, 96, 191106.Search in Google Scholar

[135] Kikuchi K., Highly sensitive interferometric autocor-relator using Si avalanche photodiode as two-photon absorber, IEEE Elec. Lett. 1998, 34, 123-125.Search in Google Scholar

[136] Kikuchi K., Optical sampling system at 1.5 μmusing two photon absorption in Si avalanche photodiode, IEEE Elec. Lett. 1998, 34, 1354-1355.Search in Google Scholar

[137] Salem R., Murphy T.E., Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode, Opt. Lett. 2004, 29, 1524-1526.Search in Google Scholar

[138] Tanaka Y., Sako N., Kurokawa T., Profilometry based on twophoton absorption in a silicon avalanche photodiode, Opt. Lett. 2003, 28, 402-404.Search in Google Scholar

[139] Shi B., Liu X., Chen Z., Jia G., Cao K., Zhang Y., Wang S., Ren C., Zhao J., Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (110) plane, Appl. Phys. B 2008, 93, 873-877.10.1007/s00340-008-3263-4Search in Google Scholar

[140] Lawson W.D., Nielson S., Putley E.H., Young A.S., Preparation and properties of HgTe and mixed crystal of HgTe-CdTe, J. Phys. Chem. Solids. 1959, 9 325-329.10.1016/0022-3697(59)90110-6Search in Google Scholar

[141] Norton P., HgCdTe infrared detectors, Opto-electron. Rev. 2002, 10, 159-174.Search in Google Scholar

[142] Scott M.W., Energy gap in Hg1−xCdxTe by optical absorption, J. Appl. Phys. 1969, 40, 4077-4081.Search in Google Scholar

[143] Verie C., Raymond F., Besson J., Nquyen Duy T., Bandgap spinorbit splitting resonance effects in Hg1−xCdxTe alloys, J. Cryst. Growth. 1982, 59, 342-346.Search in Google Scholar

[144] Wu O.K., Rajavel R.D., deLyon T.J., Jensen J.E., Jack M.D., Kosai K., Chapman G.R., Sen S., Baumgratz B.A., MBE-grown HgCdTe multi-layer heterojunction structures for high speed low noise 1.3-1.6 μm avalanche photodetectors, J. Electron. Mater. 1997, 26, 488-492.Search in Google Scholar

[145] deLyon T.J., Baumgratz B.A., Chapman G.R., Gordon E., Gorwitz M.D., Hunter A.T., Jack M.D., Jensen J.E., Johnson W., Kosai K., Larsen W., Olson G.L., Walker S.B., Epitaxial growth of HgCdTe 1.55 μm avalanche photodiodes by MBE, Proceedings of SPIE 1999, 3692, 256.10.1117/12.344562Search in Google Scholar

[146] deLyon T.J., Rajavel R.D., Jensen J.E., Wu O.K., Johnson S.M., Cockrum C.A., Venzor G.M., Heteroepitaxy of HgCdTe (112) infrared detector structures on Si (112) substrates by molecular beam epitaxy, J. Electron. Mater. 1996, 25, 1341-1346.Search in Google Scholar

[147] Wijewarnasuriya P.S., Zandian M., Edwall D.D., McLevige M.V., Chen C.A., Pasko J.G., Hildebrandt H., Chen A.C., Arias J.M., D’Souza A.I., Rujirawat S., Sivananthan S., MBE p-on-n Hg1- xCdxTe heterostructure detectors on silicon substrates, J. Electron. Mater. 1998, 27, 546-549.Search in Google Scholar

[148] Koppens H.L., Mueller T., Avouris Ph., Ferrari A.C., Vitiello M.S., Polini M., Photodetectors based on graphene, other twodimensional materials and hybrid systems, Nat. Nanotechnology 2014, 9, 780-789.10.1038/nnano.2014.215Search in Google Scholar PubMed

[149] Gan X.T., Shiue R.J., Gao Y.D., Meric I., Heinz T.F., Shepard K., Hone J., Assefa S., Englund D., Chip-integrated ultrafast graphene photodetector with high responsivity, Nat. Photon. 2013, 7, 883-887.Search in Google Scholar

[150] Pospischil A., Humer M., Furchi M.M., Backmann D., Guider R., Fromherz T., Mueller T., CMOS-compatible graphene photodetector covering all optical communication bands, Nat. Photon. 2013, 7, 892-896.Search in Google Scholar

[151] Wang X.M., Cheng Z., Xu K., Tsang H.K., Xu J., High-responsivity graphene/silicon-heterostructure waveguide photodetectors, Nat. Photon. 2013, 7, 888-891.Search in Google Scholar

[152] Sun Z.H., Chang H.X., Graphene and Graphene-like Two- Dimensional Materials in Photodetection: Mechanisms and Methodology, ACS Nano 2014, 8, 4133-4156.10.1021/nn500508cSearch in Google Scholar PubMed

[153] Nair R.R., Blake P., Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M.R., Geim A.K., Fine structure constant defines visual transparency of graphene, Science 2008, 320, 1308-1308.10.1126/science.1156965Search in Google Scholar PubMed

[154] Casiraghi C., Hartschuh A., Lidorikis E., Qian H., Harutyunyan H., Gokus T., Novoselov K.S., Ferrari A.C., Rayleigh imaging of graphene and graphene layers, Nano Lett. 2007, 7, 2711-2717.Search in Google Scholar

[155] Shi S.F., Xu X.D., Ralph D.C., McEuen P.L., Plasmon Resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors, Nano Lett. 2011, 11, 1814-1818.Search in Google Scholar

[156] Gao W.L., Shu J., Qiu C.Y., Xu Q.F., Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 2012, 6, 7806-7813.10.1021/nn301888eSearch in Google Scholar PubMed

[157] Gan X.T., Mak K.F., Gao Y.D., You Y.M., Hatami F., Hone J., Heinz T.F., Englund D., Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity, Nano Lett. 2012, 12, 5626-5631.Search in Google Scholar

[158] Grigorenko A.N., Polini M., Novoselov K.S., Graphene plasmonics, Nat. Photonics 2012, 6, 749-758.10.1038/nphoton.2012.262Search in Google Scholar

[159] Konstantatos G., Badioli M., Gaudreau L., Osmond J., Bernechea M., Arquer F.P.G.D., Gatti F., Koppens F.H.L., Hybrid graphene-quantum dot phototransistors with ultrahigh gain, Nat. Nanotechol. 2012, 7, 363-368.Search in Google Scholar

[160] Draf D., Molitor F., Ensslin K., Stampfer C., Jungen A., Hierold C., Wirtz L., Spatially resolved Raman spectroscopy of singleand few-layer graphene, Nano Lett. 2007, 7, 238-242.Search in Google Scholar

[161] Yang L., Deslippe J., Park C.H., Cohen M.L., Louie S.G., Excitonic effects on the optical response of graphene and bilayer graphene, Phys. Rev. Lett. 2009, 103, 186802.Search in Google Scholar

[162] Mak K.F., Shan J., Heinz T.F., Seeing many-body effects in single- and few-layer graphene: observation of twodimensional saddle-point excitons, Phys. Rev. Lett. 2011, 106. 046401.10.1103/PhysRevLett.106.046401Search in Google Scholar PubMed

[163] Freitag M., Low T., Xia F.N., Avouris P., Photoconductivity of biased graphene, Nat. Photonics 2013, 7, 53-59.10.1038/nphoton.2012.314Search in Google Scholar

[164] Muller T., Xia F., Freitag M., Tsang J., Avouris P., Role contacts in graphene transistors: a scanning photocurrent study, Phys. Rev. B 2009, 79, 245430.10.1103/PhysRevB.79.245430Search in Google Scholar

[165] Giovannetti G., Khomyakov P.A., Brocks G., Karpan V.M., Van den Brink J., Kelly P.J., Doping graphene with metal contacts, Phys. Rev. Lett. 2008, 101, 026803.Search in Google Scholar

[166] Lee E.J.H., Balasubramanian K., Weitz R.T., Burghard M., Kern K., Contact and edge effects in graphene devices, Nat. Nanotechnol. 2008, 3, 486-490.Search in Google Scholar

[167] Tielrooij K.J., Song J.C.W., Jensen S.A., Centeno A., Pesquera A., Zurutuza Elorza A., Bonn M., Levitov L.S., Koppens F.H.L., Photoexcitation cascade and multiple hot-carrier generation in graphene, Nat. Phys. 2013, 9, 248-252.Search in Google Scholar

[168] Johannsen J.C., Ulstrup S., Cilento F., Crepaldi A., Zacchigna M., Cacho C., Edmond Turcu I.C., Springate E., Fromm F., Raidel C., Seyller T., Parmigiani F., Grioni M., Hofmann P., Direct view of hot carrier dynamics in graphene, Phys. Rev. Lett. 2013, 111, 027403.Search in Google Scholar

[169] Song J.C.W., Rudner M.S.,Marcus C.M., Levitov L.S., Hot carrier transport and photocurrent response in graphene, Nano Lett. 2011, 11, 4688-4692.Search in Google Scholar

[170] Xu X.D., Gador N.M., Alden J.S., Van der Zande A.M., McEuen P.L., Photo-thermoelectric effect at a graphene interface junction, Nano Lett. 2010, 10, 562-566.Search in Google Scholar

[171] Lemme M.C., Koppens F.H.L., Falk A.L., Runder M.S., Park H., Levitov L.S., Marcus C.M., Gate-activated photoresponse in a graphene p-n junction, Nano Lett. 2011, 11, 4134-4237.Search in Google Scholar

[172] Kim M.H., Yan J., Suess R.J., Murphy T.E., Fuhrer M.S., Drew H.D., Photothermal response in dual-gated bilayer graphene, Phys. Rev. Lett. 2013, 110, 247402.Search in Google Scholar

[173] Yan J., Kim M.H., Elle J.A., Sushkov A.B., Jenkins G.S., Milchberg H.M., Fuhrer M.S., Drew H.D., Dual-Gated Bilayer Graphene Hotelectron Bolometer, Nat. Nanotechnol. 2012, 7, 472-478.Search in Google Scholar

[174] Xia F.N., Mueller T., Lin Y.M., Garcia A.V., Avouris P., Ultrafast graphene photodetector, Nat. Nanotechnol. 2009, 4, 839-843.Search in Google Scholar

[175] Mueller T., Xia F.N., Avouris P., Graphene photodetectors for high-speed optical communications, Nat. Photon. 2010, 4, 297-301.Search in Google Scholar

[176] Kim C.O., Kum S., Shin D.H., Kang S.S., Kim J.M., Jang C.W., Joo S.S., Lee L.S., Kim J.H., Choi S.H., Hwang E., High photoresponsivity in an all-graphene p-n vertical junction photodetector, Nat. Commun. 2014, 5, 3249:1-7.Search in Google Scholar

[177] Liu C.H., Chang Y.C., Norris T.B., Zhong Z.H., Graphene photodetectorswith ultra-broadband and high responsivity at room temperature, Nat. Commun. 2014, 9, 273-278.Search in Google Scholar

[178] Iijima S., Helical microtubules of graphite carbon, Nature 1991, 354, 56-58.10.1038/354056a0Search in Google Scholar

[179] Yang L.J., Wang S., Zeng Q.S., Zhang Z.Y., Peng L.M., Carbon Nanotube photoelectronic and photovoltaic devices and their applications in infrared detection, Small 2013, 9, 1225-1236.10.1002/smll.201203151Search in Google Scholar PubMed

[180] Itkis M.E., Borondics F., Yu A.P., Haddon R.C., Bolometric Infrared Photoresponse of suspended single-walled carbon nanotube films, Science 2006, 312, 413-416.10.1126/science.1125695Search in Google Scholar PubMed

[181] Koch S.W., Kira M., Khitrova G., Gibbs H.M., Semiconductor excitons in new light, Nat. Mater. 2006, 5, 523-531.Search in Google Scholar

[182] O’Connell M.J., Bachilo S.M., Huffman C.B., Moore V.C., Strano M.S., Haroz E.H., Rialon K.L., Boul P.J., NoonW.H., Kittrell C.,Ma J.P., Hauge R.H., Band gap fluorescence from individual singlewalled carbon nanotubes, Science, 2002, 297, 593-596.10.1126/science.1072631Search in Google Scholar PubMed

[183] Ando T., Excitons in carbon nanotubes, J. Phys. Soc. Japan 1997, 66, 1066-1073.10.1143/JPSJ.66.1066Search in Google Scholar

[184] Burda C., Chen X.B., Narayanan R., El-Sayed M.A., Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 2005, 105, 1025-1102.Search in Google Scholar

[185] Scholes G.D., Rumbles G., Excitons in nanoscale systems, Nat. Mater. 2006, 5, 683-696.Search in Google Scholar

[186] Freitag M., Martin Y., Misewich J.A., Martel R., Avouris P.H., Photoconductivity of single carbon nanotubes, Nano Lett. 2003, 3, 1067-1071.Search in Google Scholar

[187] Mohite A., Gopinath P., Shah H.M., Alphenaar B.W., Exciton dissociation and stark effect in the carbon nanotube photocurrent spectrum, Nano Lett. 2008, 8, 142-146.Search in Google Scholar

[188] Yang L.J., Wang S., Zheng Q.S., Zhang Z.Y., Pei T., Li Y., Peng L.M., Eflcient photovoltagemultiplication in carbon nanotubes, Nat. Photonics 2011, 5, 672-676.10.1038/nphoton.2011.250Search in Google Scholar

[189] Perebeinos V., Tersoff J., Avouris P., Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 2004, 92, 257402.Search in Google Scholar

[190] Kane C.L., Mele E.J., Electron interactions and scaling relations for optical excitons in carbon nanotubes, Phys. Rev. Lett. 2004, 93, 197402.Search in Google Scholar

[191] Gabor N.M., Zhong Z.H., Bosnick K., Park J.W., McEuen P.L., Extremely eflcient multiple electron-hole pair generation in carbon nanotube photodiodes, Science 2009, 325, 1367-137110.1126/science.1176112Search in Google Scholar

[192] Baer R., Rabani E., Can impact excitation explain eflcient carrier multiplication in carbon nanotube photodiodes?, Nano Lett. 2010, 10, 3277-3282.Search in Google Scholar

[193] Prechtel L., Song L., Manus S., Schuh D., Wegscheider W., Holleitner A.W., Time-resolved picosecond photocurrents in contacted carbon nanotubes, Nano Lett. 2011, 11, 269-272.Search in Google Scholar

[194] St-Antoine, Menard D., Martel R., Single-walled carbon nanotube thermopile for broadband light detection, Nano Lett. 2011, 11, 609-613.Search in Google Scholar

[195] Lu R.T., Shi J.J., Baca F.J., Wu J.Z., High performance multiwall carbon nanotube bolometers, J. Appl. Phys. 2010, 108, 084305.Search in Google Scholar

[196] Arnold M.S., Zimmerman J.D., Renshaw C.K., Xu X., Lunt R.R., Austin C.M., Forrest S.R., Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors, Nano Lett. 2009, 9, 3354-3358.Search in Google Scholar

[197] Lu R.T., Christianson C., Kirkeminde A., Ren S.Q.,Wu J., Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors, Nano Lett. 2012, 12, 6244-6249.Search in Google Scholar

[198] Wang Q.H., Kalantar-Zadeh K., Kis A., Coleman J.N., Strano M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 2012, 7, 699-712.Search in Google Scholar

[199] Ding Y., Wang Y.L., Ni J., Shi L., Shi S.Q., Tang W.H., First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers, Physica B 2011, 406, 2254-2260.Search in Google Scholar

[200] Coehoorn R., Haas C., de Groot R.A., Electronic structure of MoSe2,MoS2, andWSe2, II, The nature of the optical band gaps, Phys. Rev. B 1987, 6203-6206.10.1103/PhysRevB.35.6203Search in Google Scholar

[201] Buscema M., Barkelid M., Zwiller V., Van der Zant H.S.J., Steele G.A., Castellanos-Gomez A., Large and tunable photothermoelectic effect in single-layer MoS2, Nano Lett. 2013, 13, 358-363.Search in Google Scholar

[202] Liu F., Shimotani H., Shang H., Kanagasekaran T., Zolyomi V., Drummond N., Falko V.I., Tanigaki K., High-sensitivity photodetectors based on multilayer GaTe flakes, ACS Nano 2014, 8, 752-760.10.1021/nn4054039Search in Google Scholar

[203] Yoffe A.D., Layer compounds, Annu. Rev. Mater. Sci. 1993, 3, 147-170.Search in Google Scholar

[204] Xia F.N., Wang H., Xiao D., Dubey M., Ramasubrananiam A., Two-dimensional material nanophotonics, Nat. Photon. 2014, 8, 899-907.Search in Google Scholar

[205] Yazawa M., Koguchi M., Hiruma K., Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates, Appl. Phys. Lett. 1991, 58, 1080-1082.Search in Google Scholar

[206] Xia Y., Yang P., Sun Y.,Wu Y.,Mayers B., Gates B., Yin Y., Kim F., Yan H., One-dimensional nanostructure: synthesis, characterization and applications, Adv. Mater. 2003, 15, 353-389.Search in Google Scholar

[207] Kuykendall T., Ulrich P., Aloni S., Yang P., Complete composition tunability of InGaN nanowires using a combinatorial approach, Nat. Mater. 2007, 6, 951-956.Search in Google Scholar

[208] Deng K.M., Li Liang, CdS nanoscale photodetectors, Adv. Mater. 2014, 26, 2619-2635.Search in Google Scholar

[209] Yan R.X., Gargas D., Yang P.D., Nanowire photonics, Nat. Photon. 2009, 3, 569-576.Search in Google Scholar

[210] Nolan M., O’Callaghan S., Fagas G., Greer J.C., Silicon nanowire band gap modification, Nano Lett. 2007, 7, 34-38.Search in Google Scholar

[211] Li Y., Qian F., Xiang J., Lieber C.M., Nanowire electronic and optoelectronic devices, Materials Today 2006, 9, 18-27.10.1016/S1369-7021(06)71650-9Search in Google Scholar

[212] Murray C.B., Norris D.J., Bawendi M.G., Synthesis and characterization of nearly Monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706-8715.Search in Google Scholar

[213] Stiff-Roberts A.D., Quantum-dot infrared photodetectors: a review, J. Nanophotonics 2009, 3, 031607.10.1117/1.3125802Search in Google Scholar

[214] Konstantatos G., Sargent E.H., Nanostructured materials for photon detection, Nat. Nanotechnol. 2010, 5, 391-400.Search in Google Scholar

[215] Schaller R.D., Klimov V.I., High eflciency carrier multiplication in PdSe nanocrystals: implications for solar energy conversion, Phys. Rev. Lett. 2004, 92, 186601.Search in Google Scholar

[216] Clark S.W., Harbold J.M., Wise F.W., Resonant energy transfer in PbS quantum dots, J. Phys. Chem. C 2007, 111, 7302-7305.10.1021/jp0713561Search in Google Scholar

[217] Nozik A.J.,Multiple exciton generation in semiconductor quantum dots, Chem. Phys. Lett. 2008, 457, 3-11.Search in Google Scholar

[218] Clifford J.P., Konstantatos G., Johnston K.W., Hoogland S., Levina L., Sargent H., Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors, Nat. Nanotechnol. 2009, 4, 40-44.Search in Google Scholar

[219] Rauch T., Boberl M., Tedde S.F., Furst J., Kovalenko M.V., Hesser G., Lemmer U., Wolfgang H., Hayden O., Near-infrared imaging with quantum-dot-sensitized organic photodiodes, Nat. Photon. 2009, 3, 332-336.Search in Google Scholar

[220] Gong X., Tong M.H., Xia Y.J., Cai W.Z., Moon J.S., Cao Y., Yu G., Shieh C.L., Nilsson B., Heeger A.J., High-detectivity polymer photodetectorswith spectral response from 300nmto 1450 nm, Science 2009, 325, 1665-1667.10.1126/science.1176706Search in Google Scholar PubMed

[221] Konstantatos G., Howard I., Fischer A., Hoogland S., Clifford J., Klem E., Levina L., Sargent E.H., Ultrasensitive solution-cast quantum dot photodetectors, Nature 2006, 442, 180-183.10.1038/nature04855Search in Google Scholar PubMed

[222] Boberl M., Kovalenko M.V., Gamerith S., List E.J.W., Heiss W., Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths, Adv. Mater. 2007, 19, 3574-3578.Search in Google Scholar

[223] Martyniuk P., Rogalski A., Quantum-dot infrared photodetectors: status and outlook, Prog. Quant. Electron. 2008, 32, 89-120.Search in Google Scholar

[224] Knight M.W., Sobhani H., Nordlander P., Halas N.J., Photodetection with Active Optical Antennas, Science 2011, 332, 702-704.10.1126/science.1203056Search in Google Scholar PubMed

[225] Fan P.Y., Chettiar U.K., Cao L.Y., Afshinmanesh F., Engheta N., Brongersma M.L., An invisible metal-semiconductor photodetector, Nat. Photon. 2012, 6, 380-385.Search in Google Scholar

[226] Gu M.X., Bai P., Li E.P., Enhancing the reception of propagating surface plasmons using a nanoantenna, IEEE Photonics Technol. Lett. 2010, 22, 245-247.Search in Google Scholar

[227] Bai P., Gu M.X., Wei X.C., Li E.P., Electrical Detection of Plasmonic Waves Using an Ultra-compact Structure via a Nanocavity, Optics Express 2009, 17, 24349-24357.10.1364/OE.17.024349Search in Google Scholar PubMed

[228] Oulton R.F., Sorger V.J., Genov D.A., Pile D.F.P., Zhang X., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nat. Photon. 2008, 2, 496-500.Search in Google Scholar

[229] Chu H.S., Akimov Y., Bai P., Li E.P., Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for eflciently controlling light at subwavelength scale, JOSA B 2011, 28, 2895-2901.10.1364/JOSAB.28.002895Search in Google Scholar

[230] Chu H.S., Bai P., Li E.P., Hoefer W.J.R., Hybrid Dielectric- Loaded Plasmonic Waveguide-Based Power Splitter and Ring Resonator: Compact Size and High Optical Performance for Nanophotonic Circuit., Plasmonics 2011, 6, 591-597.10.1007/s11468-011-9239-ySearch in Google Scholar

[231] Ooi K.J.A., Bai P., Gu M.X., Ang L.K. Design of a monopoleantenna- based resonant nanocavity for detection of optical power from hybrid plasmonicwaveguides, Optics Express 2011, 19, 17075-17085.10.1364/OE.19.017075Search in Google Scholar PubMed

[232] Gu M.X., Bai P., Chu H.S., Li E.P., Design of Subwavelength CMOS Compatible Plasmonic Photodetector for Nano- Electronic-Photonic Integrated Circuits, IEEE Photonic Tech. Lett. 2012, 24, 515-517.Search in Google Scholar

[233] Ooi K.J.A., Bai P., Gu M.X., Ang L.K., Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors, Nanotechnology 2012, 23, 275201.10.1088/0957-4484/23/27/275201Search in Google Scholar PubMed

[234] Wang F.M., Melosh N.A., Plasmonic Energy Collection through Hot Carrier Extraction, Nano Lett. 2011, 11, 5426-5430.Search in Google Scholar

[235] Romero I., Aizpurua J., Bryant G.W., De Abajo F.J.G., Plasmons in Nearly-Touching Metallic Nanoparticles: Singular Response in the Limit of Touching Dimers, Opt. Express 2006, 14, 9988-9999.10.1364/OE.14.009988Search in Google Scholar PubMed

[236] Lassiter J.B., Aizpurua J., Hernandez L.I., Brandl D.W., Romero I., Lal S., Hafner J.H., Nordlander P., Halas N.J., Close Encounters between Two Nanoshells, Nano Lett. 2008, 8, 1212-1218.Search in Google Scholar

[237] Zuloaga J., Prodan E., Nordlander P., Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer, Nano Lett. 2009, 9, 887-891.Search in Google Scholar

[238] Esteban R., Borisov A.G., Nordlander P., Aizpurua J., Bridging Quantum and Classical Plasmonics with a Quantum-Corrected Model, Nat. Commun. 2012, 3, 825: 1-9.Search in Google Scholar

[239] Wu L., Duan H.G., Bai P., Bosman M., Yang J.K.W., Li E.P., Fowler- Nordheim Tunneling Induced Charge Transfer Plasmons between Nearly-Touching Nanoparticles, ACS Nano 2013, 7, 707-716.10.1021/nn304970vSearch in Google Scholar PubMed

[240] Savage K.J., Hawkeye M.M., Esteban R., Borisov A.G., Aizpurua J., Baumberg J.J., Revealing the Quantum Regime in Tunneling Plasmonics, Nature 2012, 491, 574-577.10.1038/nature11653Search in Google Scholar PubMed

[241] Tan S.F., Wu L., Yang J.K.W., Bai P., Bosman M., Nijhuis C.A., Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions, Science 2014, 343, 1496-1499.10.1126/science.1248797Search in Google Scholar PubMed

[242] Tame M.S., McEnery K.R., Özdemir S.K., Lee J.,Maier S.A., Kim M.S., Quantum plasmonics., Nat. Phys. 2013, 9, 329-340.Search in Google Scholar

[243] Lee C.H., Lee G.H., Zande A.M.V.D., ChenW.C., Li Y.L., Han M.Y., Cui X., Arefe G., Nuckolls C., Heinz T.F., Guo J., Hone J., Kim P., Atomically thin p-n junctions with van der Waals heterointerfaces, Nat. Nanotech. 2014, 9, 676-681. Search in Google Scholar

Received: 2015-1-21
Accepted: 2015-4-16
Published Online: 2015-10-6
Published in Print: 2015-1-1

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.6.2024 from https://www.degruyter.com/document/doi/10.1515/nanoph-2015-0012/html
Scroll to top button