Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2021

Concrete anisotropy estimated from ultrasonic signal amplitudes

  • Nevbahar Ekin

    Dr. Nevbahar Ekin, was born in 1981 in Şirnak, Turkey. She received her BSc and MSc at Ankara University, in the Department of Geophysical Engineering. She has been working as a Research Assistant at Suleyman Demirel University since 2011. She received her Doctorate degree there in the Department of Geophysical Engineering in 2016working on structure geophysics and nondestructive methods.

    EMAIL logo
From the journal Materials Testing

Abstract

The anisotropy of concrete is an essential issue in the construction industry. In this study, for the first time, ultrasonic compression and shear wave signals have been investigated for the orthogonal directions of unreinforced concrete by means of fast Fourier transformation (FFT). For this purpose, cubic concrete samples were prepared in 12 designs of different strengths for ultrasound transmission measurements. The characteristic amplitudes at dominant frequencies were determined by the FFT of these signals. The FFT amplitude differences in the compression and the shear wave signals on the orthogonally oriented surfaces provide essential information about the presence and degree of anisotropy. According to linear regression analysis, the FFT amplitude anisotropies and the amplitude ratios of the compression and shear waves decreased significantly according to increasing concrete strength. In addition, it was found that the anisotropy and the ratio of the FFT amplitudes increased proportionally to the water/cement ratio, the porosity and the water content of the various concrete designs.


Dr. Nevbahar Ekin Suleyman Demirel University, Dept. of Geophysical Engineering 32260 Isparta, Turkey

About the author

Dr. Nevbahar Ekin

Dr. Nevbahar Ekin, was born in 1981 in Şirnak, Turkey. She received her BSc and MSc at Ankara University, in the Department of Geophysical Engineering. She has been working as a Research Assistant at Suleyman Demirel University since 2011. She received her Doctorate degree there in the Department of Geophysical Engineering in 2016working on structure geophysics and nondestructive methods.

Acknowledgements

The author would like to thank Assoc. Prof. Dr. Osman UYANIK and Dr. Ziya ÖNCÜ for their valuable suggestions.

References

1 S. Popovics, J. S. Popovics: Ultrasonic testing to determine water-cement ration for fresh concrete, American Standard for Testing and Materials 20 (1998), No. 2, pp. 262-268 DOI:10.1520/CCA10420J10.1520/CCA10420JSearch in Google Scholar

2 P. Antonaci, C. L. E. Bruno, A. S. Gliozzi, M. Scalerandi: Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods, Cement and Concrete Research 40 (2010), No. 7, pp. 1106-1113 DOI:10.1016/j.cemconres.2010.02.01710.1016/j.cemconres.2010.02.017Search in Google Scholar

3 D. M. McCann, M. C. Forde, Review of NDT methods in the assessment of concrete and masonry structures, NDT&E International 34 (2001), No. 2, pp. 71-84 DOI:10.1016/S0963-8695(00)00032-310.1016/S0963-8695(00)00032-3Search in Google Scholar

4 A. Carpinteri, S. Invernizzi, G. Lacidogna: In situ damage assessment and nonlinear modelling of a historical masonry tower, Engineering Structure 27 (2005), No. 3, pp. 387-395 DOI:10.1016/j.engstruct.2004.11.00110.1016/j.engstruct.2004.11.001Search in Google Scholar

5 A. Sadri, K. Mirkhani: Wave propagation concrete NDT techniques for evaluation of structures and materials, ASPNDE 6th International Workshop NDT Signal Processing (2009), 8p. DOI:10.1.1.161.5470&rep=rep1&type=pdf10.1.1.161.5470&rep=rep1&type=pdfSearch in Google Scholar

6 P. Shokouhi, A. Zöega, H. Wiggenhauser: Nondestructive investigation of stress-induced damage in concrete, Advances in Civil Engineering, Article ID 740189 (2010), 9p DOI:10.1155/2010/74018910.1155/2010/740189Search in Google Scholar

7 U. Karr, R. Schuller, M. Fitzka, A. Denk, A. Strauss, H. Mayer: Very high cycle fatigue testing of concrete using ultrasonic cycling, Materials Testing 59 (2017), No. 5, pp. 438-444 DOI:10.3139/120.11102110.3139/120.111021Search in Google Scholar

8 W. Yan, G. Lu, C. S. Jie, Z. T. Ting, Z.Li: Identification of the damage degree of concrete with different water cement ratios using the acoustoultrasonic technique, Materials Testing 59 (2017), No. 10, pp. 909-915 DOI:10.3139/120.11108710.3139/120.111087Search in Google Scholar

9 A. A. Shah, Y. Ribakov: Non-linear nondestructive evaluation of concrete, The Open Construction and Building Technology Journal (2008), No. 2, pp. 111-115 DOI:10.2174/187483680080201011110.2174/1874836800802010111Search in Google Scholar

10 S. Kovacs, S. Stille, D. Ernstes, T. Beck: Upgrading an ultrasonic fatigue testing machine by means of early stage damage detection, Materials Testing 55 (2013), pp. 78-83 DOI:10.3139/120.11040910.3139/120.110409Search in Google Scholar

11 S. P. Martinovic, M. M. Vlahovic, J. B. Majstorovic, T. D. V. Husovic: Anisotropy analysis of low cement concrete by ultrasonic measurements and image analysis, Science of Sintering 48 (2016), No. 1, pp. 57-70 DOI:10.2298/SOS1601057M10.2298/SOS1601057MSearch in Google Scholar

12 H. Acikel: Mechanical properties of hybrid fiber reinforced concrete and a nondestructive evaluation, Materials Testing 61 (2019), No. 12, pp. 1171-1177 DOI:10.3139/120.11143810.3139/120.111438Search in Google Scholar

13 Y. Wang, T. Zhang, C. Yan, N. Wang, F. Yao, L. Chen, J. Gu: Effect of different loading systems on acousto-ultrasonic characteristics of concrete under axial compression, Materials Testing 61 (2019), No. 6, pp. 591-599 DOI:10.3139/120.11136010.3139/120.111360Search in Google Scholar

14 J. S. Lee, H. K. Yoon: Characterization of rock weathering using elastic waves: a laboratory-scale experimental study, Journal of Applied Geophysics (2017), No. 140, pp. 24-33 DOI:10.1016/j.jappgeo.2017.03.00810.1016/j.jappgeo.2017.03.008Search in Google Scholar

15 N. Sabbağ, O. Uyanik: Doygun betonlarin statik ve dinamik elastik parametrelerinin karşilaştirilmasi, Afyon Kocatepe University Journal of Science and Engineering (2018), No.18, pp. 1181-1189 DOI:10.5578/fmbd.6758810.5578/fmbd.67588Search in Google Scholar

16 O. Uyanik, N. Sabbağ, N. A. Uyanik, Z. Öncü: Prediction of mechanical and physical properties of some sedimentary rocks from ultrasonic velocities, Bulletin of Engineering Geology and the Environment 78 (2019), No. 8, pp. 6003-6016 DOI:10.1007/s10064-019-01501-610.1007/s10064-019-01501-6Search in Google Scholar

17 B. Chassignole, V. Duwig, M. A. Ploix, P. Guy, R. El Guerjouma: Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds, Ultrasonics 49 (2009), No. 8, pp. 653-658 DOI:10.1016/j.ultras.2009.04.00110.1016/j.ultras.2009.04.001Search in Google Scholar PubMed

18 M. Yenugu: Ultrasonic measurements of anisotropy of shales, Geohorizons, Corpus ID: 201695650 (2010), pp. 15-22Search in Google Scholar

19 T. Y. Aydin, A. Kucukkose: Ultrasonic testing and evaluation of moisture-dependent elastic properties of fir wood, Materials Testing, 62 (2020), No. 10, pp. 1059-1064 DOI 10.3139/120.11158510.3139/120.111585Search in Google Scholar

20 I. N. Prassianakis, N. I. Prassianakis: Ultrasonic testing of non-metallic materials: concrete and marble, Theoretical and Applied Fracture Mechanics 42 (2004), No. 2, pp. 191-198 DOI:10.1016/j.tafmec.2004.08.00710.1016/j.tafmec.2004.08.007Search in Google Scholar

21 S. R. Kolkoori, M. U. Rahman, P. K. Chinta, M. Ktreutzbruck, M. Rethmeier, J. Prager: Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: Numerical and experimental comparison, Ultrasonics 53 (2013), No. 2, pp. 396-411 DOI:10.1016/j.ultras.2012.07.00610.1016/j.ultras.2012.07.006Search in Google Scholar PubMed

22 Z. M. Sbartai, S. Laurens, D. Breysse: Concrete moisture assessment using radar NDT technique–comparison between time and frequency domain analysis, NDTCE’09, Non-Destructive Testing in Civil Engineering, Nantes, France, (2009), 8p. DOI:10.1.1.216.5092&rep=rep1&type=pdf10.1.1.216.5092&rep=rep1&type=pdfSearch in Google Scholar

23 S. Popovics, J. L. Rose, JS. Popovics: The behavior of ultrasonic pulses on concrete, Cement and Concrete Research 20 (1990), No. 2, pp. 259-70 DOI:10.1016/0008-8846(90)90079-D10.1016/0008-8846(90)90079-DSearch in Google Scholar

24 A. A. Shah, Y. Ribakov: Non-linear ultrasonic evaluation of damaged concrete based on higher order harmonic generation, Materials and Design 30 (2009), No. 10, pp. 4095-4102 DOI:10.1016/j.matdes.2009.05.00910.1016/j.matdes.2009.05.009Search in Google Scholar

25 N Sabbağ, O. Uyanik: Prediction of reinforced concrete strength by ultrasonic velocities, Journal of Applied Geophysics (2017), No. 141, pp. 13-23 DOI:10.1016/j.jappgeo.2017.04.00510.1016/j.jappgeo.2017.04.005Search in Google Scholar

26 K. Warnemuende: Amplitude modulated acoustoultrasonic non-destructive testing: damage evaluation in concrete, Wayne State University, Civil Engineering, PhD. Thesis, (2006), 240p.Search in Google Scholar

27 R. Pinar, Z. Akçiğ: Jeofizikte sinyal kurami ve dönüşümler, TMMOB Jeofizik Mühendisleri Odasi, Ankara, Eğitim Yayinlari (1995), No. 3Search in Google Scholar

28 E. A. Whitehurst: Soniscope test concrete structures, ACI Journal Proceedings (1951), No. 47, pp. 443-444Search in Google Scholar

29 W. E. Parker: Pulse velocity testing of concrete, Proceeding ASTM (1953), No. 53, pp. 1033Search in Google Scholar

30 S. M. Breuning, A. J. Bone: Soniscope applied to maintenance of concrete structures, 33rd Annual Meeting, Proceeding Highway Research Board (1954), No. 33, pp. 210-216Search in Google Scholar

31 R. Jones: Testing of concrete by ultrasonic pulse technique, Proceeding Highway Research Board (1953), No. 32, pp. 258-275Search in Google Scholar

32 D. McHenry, CC. Oleson: Pulse velocity measurements on concrete dams, Trans. 9th Int. Congr. on Large Dams, Istanbul, 3 (1967), No. 73, pp. Q34, R5Search in Google Scholar

33 L. D. Olson, D. A. Sack: Nondestructive evaluation of concrete dams and other structures, Proc. SPIE (The International Society for Optical Engineering) 2457 (1995) DOI:10.1117/12.20938910.1117/12.209389Search in Google Scholar

34 J. Rhazi, Y. Kharrat, G. Ballivy, M. Rivest: Application of acoustical imaging to the evaluation of concrete in operating structure, Symposium paper, S. Pessiki and L. Olson, Eds., ACI SP 168, American Concrete Institute, Farmington Hills, MI, (1997), pp. 221-232.Search in Google Scholar

35 Y. K. Lee, T. Oh: The Measurement of P-, S-, and R-Wave Velocities to Evaluate the Condition of Reinforced and Prestressed Concrete Slabs, Advances in Materials Science and Engineering, Article ID 1548215 (2016), 14p. DOI:10.1155/2016/1548215.10.1155/2016/1548215Search in Google Scholar

36 R. D. Woods: Screening of surface waves in soils, ASCE Journal of Soil Mechanics and Foundations Division 94 (1968), No. 4, pp. 951-980 DOI:10.1061/JSFEAQ.000118010.1061/JSFEAQ.0001180Search in Google Scholar

37 A. A. Samokrutov, V. N. Kozlov, V. G. Shevaldykin, I. A. Meleshko: Ultrasonic defectoscopy of concrete by means of pulseecho technique, The 8th European Conference for Non-Destructive Testing, Barcelona, Spain, (2002), V Mire Nerazrushayushchego Kontrolya, 2002, No. 2(16), pp. 6-10.Search in Google Scholar

38 O. Uyanik: Sismik hizlardan beton dayaniminin belirlenmesi, Jeofizik Bülteni UCTEA Chamber of Geophysical Engineers, Ankara-Turkey (2012), pp. 25-30Search in Google Scholar

39 N. Sabbağ, O. Uyanik: Time-dependent change of seismic velocities on low strength concrete, The Online Journal of Science and Technology (TOJSAT) 6 (2016), No. 4, pp. 49-57Search in Google Scholar

40 J. Chakraborty, A. Katunin: Detection of structural changes in concrete using embedded ultrasonic sensors based on autoregressive model, Diagnostyka 20 (2019), No. 1, pp. 103-110 DOI:10.29354/diag/10044810.29354/diag/100448Search in Google Scholar

41 A. E. C. M. Souza, S. Vialle, A. Bona: Ultrasonic wave velocities measurements and seismic anisotropy at Karari gold deposit: Implications for gold exploration, AEGC 2019: From Data to Discovery – Perth, Australia, (2019), 5p. DOI:10.1080/22020586.2019.1207301010.1080/22020586.2019.12073010Search in Google Scholar

42 J. R. Leslie, WJ. Cheesman: An ultrasonic method of studying deterioration and cracking in concrete structures, ACI Journal Proceedings (1950), No. 46, pp. 17-36Search in Google Scholar

43 D. Pandey, S. Pandey: Ultrasonics: a technique of material characterization. Acoustic Waves, Don W. Dissanayake (Ed.), ISBN 978-953-307111-4, (2010), 466p. DOI:10.5772/1015310.5772/10153Search in Google Scholar

44 O. Uyanik, K. Kaptan, F. G. Gülay, S. Tezcan: Beton dayaniminin tahribatsiz ultrasonik yöntemle tayini, Yapi Dünyasi (2011), No. 184, pp. 55-58Search in Google Scholar

45 O. Uyanik, S. Tezcan: Beton dayaniminin ultrasonik yöntemle tayini, Jeofizik Bülteni, UCTEA Chamber of Geophysical Engineers, Ankara, Turkey, (2012), pp. 41-45Search in Google Scholar

46 O. Uyanik, G. Şenli, B. Çatlioğlu: Determination from non-destructive geophysics methods of concrete quality of buildings. SDU International Technologic Science 5 (2013), No. 2, pp. 156-165Search in Google Scholar

47 O. Uyanik, B. Çatlioğlu: Determination of density from ultrasonic velocities, Jeofizik, Chamber of Geophysical Engineers, Ankara, Turkey, 17 (2015), No. 1-2, pp. 3-15Search in Google Scholar

48 G. E. Backus: Long-wave elastic anisotropy produced by horizontal layering, Journal of Geophysical Research 67 (1962), No. 11, pp. 4427-4440 DOI:10.1029/JZ067i011p0442710.1029/JZ067i011p04427Search in Google Scholar

49 K. R. Nunn, R. D. Barker, D. Bamfordt: In situ seismic and electrical measurements of fracture anisotropy, in the lincolnshire chalk, Quarterly Journal of Engineering Geology and Hydrogeology 16 (1983), No. 3, pp. 187-195 DOI:10.1144/GSL.QJEG.1983.016.03.0310.1144/GSL.QJEG.1983.016.03.03Search in Google Scholar

50 ACI Committee 544: State of the art report on fiber reinforced concrete, ACI 544.1R-96, 66p., American Concrete Institute, ACI Farmington Hills, MI, (1996), 48333-9094, USASearch in Google Scholar

51 B. Anderson, I. Bryant, M. Luling, B. Spies, K. Helbig: Oilfield anisotropy: Its origins and electrical characteristics, Schlumberger Oilfield Reviews 6, ISSN: 0923-1730 (1994), No. 4, pp. 48-56Search in Google Scholar

52 D. F. Winterstein: Velocity anisotropy terminology for geophysicists, Geophysics 55 (1990), No. 8, pp. 1070-1088 DOI:10.1190/1.144291910.1190/1.1442919Search in Google Scholar

53 T. A. Thompson: Stress- induced anisotropy: the effects of stress on seismic wave propagation, Department of Exploration Geophysics Curtin University of Technology, Report No: GPH 3/98, (1998), 199p. DOI:10.1071/EG0048910.1071/EG00489Search in Google Scholar

54 V. Bucur, P. N. J. Rasolofosaon: Dynamic elastic anisotropy and nonlinearity in wood and rock, Ultrasonics 36 (1998), No. 7, pp. 813-824 DOI:10.1016/S0041-624X(98)00004-310.1016/S0041-624X(98)00004-3Search in Google Scholar

55 ASTM C597-16: Standard test method for pulse velocity through concrete, ASTM International, West Conshohocken, PA, (2016), 4p. DOI:10.1520/C0597-1610.1520/C0597-16Search in Google Scholar

56 V. K. Kachanov, I. V. Sokolov, R. V. Kontsov, S. V. Lebedev and S. A. Fedorenko: Ultrasonic wave velocity measurement in concrete using the impact-echo method, Insight-Non-Destructive Testing and Condition Monitoring 61 (2019), No. 1, 5p. DOI:10.1784/insi.2018.61.1.XXX10.1784/insi.2018.61.1.XXXSearch in Google Scholar

57 J. Beres: Characterisation of anisotropy in a karstified carbonate platform using seismic and electrical resistivity methods – a joint approach, University Paris Sud, Geophysics, Modelling and Instruments in Physics, Energies, Geosciences and Environment, PhD Thesis, (2013), 191p.Search in Google Scholar

58 T. A. Kaplan: Erratum: classical spin-configuration stability in the presence of competing exchange forces, Physical Review B, Condensed matter 79 (1959), No. 22, pp. 229901 DOI:10.1103/PhysRevB.79.22990110.1103/PhysRevB.79.229901Search in Google Scholar

59 B. T. Gebretsadik: Ultrasonic pulse velocity investigation of steel fiber reinforced self-compacted concrete, Master of Science in Civil Engineering Department of Civil and Environmental Engineering Howard R. Hughes College of Engineering the Graduate College, University of Nevada, (2013), 62p. DOI:10.34917/447824610.34917/4478246Search in Google Scholar

60 R. Sato, T. Wada, R. Sato, M. Ucda: Fast Fourier one-dimensional analysis of concrete crack surface, Fracture Mechanics of Concrete Structures, ISBN: 902651825-O (2001), pp. 423-430Search in Google Scholar

61 L. Thomsen: Weak elastic anisotropy, Geophysics 51 (1986), No. 10, pp. 1954-1966 DOI:10.1190/1.144205110.1190/1.1442051Search in Google Scholar

62 J. M. Torrenti, G. Pijaudier-Cabot, J. M. Reynouard: Mechanical behavior of concrete, Hoboken, NJ: Wiley, ISBN: 978111862230-8 (2013), 433p.10.1002/9781118557587Search in Google Scholar

Published Online: 2021-12-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/mt-2021-0053/html
Scroll to top button