Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 23, 2016

Porosity and Surface Modifications on Carbon Materials for Capacitance Improvement

  • A.K. Cuentas-Gallegos , N. Rayón-López , L.M. Mejía , H. Villafán Vidales , M. Miranda-Hernández , M. Robles and J. Muńiz-Soria
From the journal Open Material Sciences

Abstract

Supercapacitors (SC) are energy storage devices with higher power but lower energy density than Li batteries. SC store energy based on two mechanisms: double layer capacitance (non-Faradaic) and pseudocapacitance (faradaic). Porous carbon materials have been extensively used as electrodes in SC, where their great surface area and pore size distribution have been the main properties for capacitance improvement. Nevertheless, these properties have shown limitations since they cannot be highly increased without losing electric conductivity, which is detrimental for the power requirements of SC. An alternative approach to increase capacitance has been the surface modification of carbon materials by introducing faradaic contributions. In this mini review, the effect of surface area, porosity, surface modification by doping or functionalization, and introduction of electroactive oxides are discussed to show how these factors influences the intrinsic capacitance values of different carbon materials; and some examples from our work are provided. The manipulation of such properties, on carbon materials (porosity and /or surface chemistry) not only are useful for devices such as SC, but also are very useful for a wide variety of Bio-applications (Bio-sensors, labelling and drug delivery, impregnation with microorganisms for its use as biochar, or for bio-fuel cells, etc.)

References

[1] Conway B.E., Electrochemical Supercapacitors, Kluwer Academic/ Plenum, New York, 1999.; Beguin F., Frackowiak E., Supercapacitors: Materials, Systems and Applications, JohnWiley & Sons, 2013. Search in Google Scholar

[2] P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon–electrolyte Systems, Accounts Chem Res 46, 2013, 1094. 10.1021/ar200306bSearch in Google Scholar

[3] G.Z. Chen, Understanding supercapacitors based on nanohybrid materials with interfacial conjugation. Prog Nat Sci: Mater Int 23, 2013, 245. 10.1016/j.pnsc.2013.04.001Search in Google Scholar

[4] A.K. Cuentas-Gallegos, M. Miranda-Hernández, D. Pacheco- Catalán, Environmentally- friendly supercapacitors, in Materials for Sustainable Energy Applications. Conversion, Storage, Transmission and Consumption, Pan Stanford publishing, 2016. 10.1201/b20121-12Search in Google Scholar

[5] J. Robertson, Amorphous Carbon, Advances in Physics 35, 2006, 317 10.1080/00018738600101911Search in Google Scholar

[6] J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi, Desolvation of Ions in Subnanometer pores and its effect on capacitance and double-layer theory, Angew Chem 120, 2008, 3440. 10.1002/ange.200704894Search in Google Scholar

[7] H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32, 1994, 759. 10.1016/0008-6223(94)90031-0Search in Google Scholar

[8] B. Fang, Y.Z. Wei, M. Kumagai, Modified carbon materials for high-rate EDLCs applications, J Power Sourc 155, 2006, 487. 10.1016/j.jpowsour.2005.04.012Search in Google Scholar

[9] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Influence of porestructure and Surface chemistry on electric double layer capacitance in nonaqueous electrolyte, Carbon 41, 2003, 1765. 10.1016/S0008-6223(03)00141-6Search in Google Scholar

[10] Rajbhandari, R., L.K. Shrestha, B.P. Pokharel and R.R. Pradhananga, Development of nanoporous structure in carbon by chemical activation with zinc chloride, J Nanosci Nanotechnol 13, 2013, 2613. 10.1166/jnn.2013.7373Search in Google Scholar PubMed

[11] C.L. Liu, W.-S. Dong, G.-P. Cao, J.-R. Song, L. Liu, Y.-S. Yang, Influence of KOH followed by oxidation pretreatment on the electrochemical performance of phenolic based activated carbon fibers, J Electroanal Chem 611, 2007, 225. 10.1016/j.jelechem.2007.09.003Search in Google Scholar

[12] P.W. Zhou, B.H. Li, F.Y. Kang, Y.Q. Zeng, The development of supercapacitors from coconut-shell activated carbon, New Carbon Mater 21, 2006, 125. Search in Google Scholar

[13] X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.-Z. Qiao and G.-Q. Lu, Preparation of capacitor´s electrode from sunflower seed shell, Bioresource Technol 102, 2011, 1118. 10.1016/j.biortech.2010.08.110Search in Google Scholar

[14] V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thoma, B. Wei, Supercapacitors from activated carbon derived from banana fibers, J Phys Chem C 111, 2007, 7527. 10.1021/jp067009tSearch in Google Scholar

[15] Rufford, T.E., D. Hulicova-Jurcakova, K. Khosla, Z. Zhu and G.Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J Power Sourc 195, 2010, 912. 10.1016/j.jpowsour.2009.08.048Search in Google Scholar

[16] M.P. Bichat, E. Raymundo-Pińero, F. Béguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon 48, 2010, 4351. 10.1016/j.carbon.2010.07.049Search in Google Scholar

[17] C.-C. Hu, J.-H. Su, T.-C. Wen, Modification of multi-walled carbon nanotubes for electric double-layer capacitors: tube opening and surface functionalization, J Phys Chem Solid 68, 2007, 2353. 10.1016/j.jpcs.2007.07.002Search in Google Scholar

[18] K. Tőnurist, K., T. Thomberg, A. Jänes, T. Romann, V. Sammelselg, E. Lust, Influence of separator properties on electrochemical performance of electrical double-layer capacitors, J Electroanal Chem 689, 2013, 8. 10.1016/j.jelechem.2012.11.024Search in Google Scholar

[19] B. Campbell, R. Ionescu, Z. Favors, C.S. Oskan, M. Oskan, Bio- Derived, Binderless, Hierarchically Porous carbon anodes for Li- Ion batteries, Scientific Reports 5, 2015, 14575. 10.1038/srep14575Search in Google Scholar

[20] A. Ghosh, Y.H. Lee, Carbon-based electrochemical capacitors, ChemSusChem 5, 2012, 480. 10.1002/cssc.201100645Search in Google Scholar

[21] B.S. Girgis, M.F. Ishak, Activated carbon from cotton stalks by impregnation with phosphoric acid, Mater Lett 39, 1999, 107. 10.1016/S0167-577X(98)00225-0Search in Google Scholar

[22] S.K.R. Kuppireddy, K. Rashid, A. Al Shoaibi, C. Srinivasakannan, Production and characterization of porous carbon from date palm seeds by chemical activation with H3PO4: process optimization for maximizing adsorption of Methylene blue, Chem Eng Commun 201, 2013, 1021. 10.1080/00986445.2013.797896Search in Google Scholar

[23] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J Power Sourc 157, 2006, 11. 10.1016/j.jpowsour.2006.02.065Search in Google Scholar

[24] P. Simon, A. Burke, Nanostructured carbons:double-layer capacitance and more, Interface, 2008, 38. 10.1149/2.F05081IFSearch in Google Scholar

[25] F. Caturla, M. Molina-Sabio, F. Rodríguez-Reinoso, Preparation of activated carbón by chemical activation with ZnCl2, Carbon 29, 1991, 999. 10.1016/0008-6223(91)90179-MSearch in Google Scholar

[26] M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage, Energ Environ Sci 7, 2014, 1250. 10.1039/C3EE43525CSearch in Google Scholar

[27] a) J. Chmiola, G. Yushin, R. Dash and Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J Power Sourc 158, 2006, 765. b) J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313, 2006, 1760. 10.1016/j.jpowsour.2005.09.008Search in Google Scholar

[28] W. Xing, S.Z. Qiao, R.G. Ding, F. Li, G.Q. Lu, Z.F. Yan, H.M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon 44, 2006, 216. 10.1016/j.carbon.2005.07.029Search in Google Scholar

[29] C. Zheng, L. Qi, M. Yoshio, H. Wang, Cooperation of microand meso-porous carbon electrodematerials in electric doublelayer capacitors, J Power Sourc 195, 2010, 4406. 10.1016/j.jpowsour.2010.01.041Search in Google Scholar

[30] C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor, J Am Chem Soc 130, 2008, 2730. 10.1021/ja7106178Search in Google Scholar PubMed

[31] J.A. Fernández, T. Morishita, M. Toyoda, M. Inagaki, F. Stoeckli, T. A. Centeno, Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors, J Power Sourc 175, 2008, 675. 10.1016/j.jpowsour.2007.09.042Search in Google Scholar

[32] S. Álvarez, M. C. Blanco-López, A. J. Miranda-Ordieres, A. B. Fuertes, T. A. Centeno, Electrochemical capacitor performance of mesoporous carbons obtained by templating technique, Carbon 43, 2005, 866. 10.1016/j.carbon.2004.10.044Search in Google Scholar

[33] A.B. Fuertes, G. Lota, T. A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim Acta 50, 2005, 2799. 10.1016/j.electacta.2004.11.027Search in Google Scholar

[34] J.-B. Donnet, R. C. Bansal, M. J.Wang, Carbon Black: Science and Technology, 2nd ed., CRC Press: NY. 461, 1993. Search in Google Scholar

[35] G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Carbon electrodes for double-layer capacitors I. Relations between ions and pore dimensions, J Electrochem Soc 147, 2000, 2486. 10.1149/1.1393557Search in Google Scholar

[36] R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J Mater Sci 24, 1989,3221. 10.1007/BF01139044Search in Google Scholar

[37] H. Pröbstle, M. Wiener, J. Fricke, Carbon aerogels for electrochemical double layer capacitors, J Porous Mat 10, 203, 213. 10.1023/B:JOPO.0000011381.74052.77Search in Google Scholar

[38] U. Fischer, R. Saliger, V. Bock, R. Petricevic, J. Fricke, Carbon aerogels as electrode material in supercapacitors, J Porous Mat 4, 1997, 281. 10.1023/A:1009629423578Search in Google Scholar

[39] A. Stein, Z. Wang, M.A. Fierke, Functionalization of porous carbon materials with designed pore architecture, Adv Mater 21, 2009, 265. 10.1002/adma.200801492Search in Google Scholar

[40] S. Isikli, R. Díaz, Substrate-dependent performance of supercapacitors based on an organic redox couple impregnated on carbon, J Power Sourc 206, 2012, 53. 10.1016/j.jpowsour.2012.01.088Search in Google Scholar

[41] K.W. Leitner, B. Gollas, M. Winter,J.O. Besenhard, Combination of redox capacity and double layer capacitance in composite electrodes through immobilization of an organic redox couple on carbon black, Electrochim Acta 50, 2004, 199. 10.1016/j.electacta.2004.07.030Search in Google Scholar

[42] G. Pognon, T. Brousse, L. Demarconnay, D. Bélanger, Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon, J Power Sourc 196, 2011, 4117. 10.1016/j.jpowsour.2010.09.097Search in Google Scholar

[43] X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale 3, 2011, 839. 10.1039/c0nr00594kSearch in Google Scholar PubMed

[44] A. Karina Cuentas-Gallegos, R. Martínez-Rosales, M. E. Rincón, G. Hirata, G. Orozco, Design of Hybrid Materials Based On Carbon Nanotubes and Polyoxometalates, OptMater 29, 2006, 126. 10.1016/j.optmat.2006.03.020Search in Google Scholar

[45] A. K. Cuentas-Gallegos, R. Martínez-Rosales, M. Baibarac, P. Gómez-Romero, M.E. Rincón, Electrochemical Supercapacitors based on Novel Hybrid Materials made of Carbon Nanotubes and Polyoxometalates, Electrochem Commun 9, 2007, 2088. 10.1016/j.elecom.2007.06.003Search in Google Scholar

[46] A. K. Cuentas-Gallegos, A. Zamudio-Flores, M. Casas-Cabanas, Dispersion of SiW12 Nanopaticles on Highly Oxidized Multiwalled Carbon Nanotubes, J Nano R 14, 2011, 11. 10.4028/www.scientific.net/JNanoR.14.11Search in Google Scholar

[47] A. K. Cuentas-Gallegos, S. Peńaloza-Jiménez, D.A. Baeza- Rostro, A. Germán-García, Influence of the Functionalization Degree ofMultiwalled Carbon Nanotubes on the Immobilization of Polyoxometalates and Its Effect on their Electrochemical Behavior, J New Mater Electrochem Syst 13, 2010, 369 Search in Google Scholar

[48] A.K. Cuentas-Gallegos, M. González-Toledo, M.E. Rincón, Nanocomposite Hybrid Material based on Carbon Nanofibers and Polyoxometalates, Rev Mex Fis S 53, 2007, 91 Search in Google Scholar

[49] D.A. Baeza-Rostro, A. K. Cuentas-Gallegos, Capacitance Improvement of Carbon Aerogels by the immobilization of Polyoxometalates Nanoparticles, J New Mater Electrochem Syst 16, 2013, 203. 10.14447/jnmes.v16i3.19Search in Google Scholar

[50] V. Ruiz, J. Suárez-Guevara, P. Gómez-Romero, Hybrid electrodes based on polyoxometalate-carbon materials for electrochemical supercapacitors, Electrochem Comm 24, 2012, 35. 10.1016/j.elecom.2012.08.003Search in Google Scholar

[51] H. I. Villafán Vidales, A. Jiménez-González, A. Bautista-Orozco, C.A. Arancibia-Bulnes, C. A. Estrada, Solar production of WO3: a green approach, Green Process Synth 4, 2015, 167. 10.1515/gps-2014-0102Search in Google Scholar

[52] S. Trasatti, G. Buzzanca, Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour, J Electroanal Chem Interfacial Electrochem 29, 1971, A1. 10.1016/S0022-0728(71)80111-0Search in Google Scholar

[53] M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem Mater 16, 2004, 3184. 10.1021/cm049649jSearch in Google Scholar

[54] M. Ghaemi, F. Ataherian, A. Zolfaghari, S. M. Jafari, Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction, Electrochim Acta 53, 2008, 4607. 10.1016/j.electacta.2007.12.040Search in Google Scholar

[55] S.-H. Li, Q.-H. Liu, L. Qi, L.-H. Lu, H.-Y. Wang, Progress in research on manganese dioxide electrode materials for electrochemical capacitors, Chinese J Anal Chem 40, 2012, 339. 10.3724/SP.J.1096.2012.10948Search in Google Scholar

[56] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J Phys Chem C 112, 2008, 4406. 10.1021/jp7108785Search in Google Scholar

[57] J.N. Tiwari, V. Vij, C. Kemp, K.S. Kim, Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules, ACS Nano 10, 2016, 46. 10.1021/acsnano.5b05690Search in Google Scholar

[58] Y. Chen, J. Shi, Mesoporous Carbon Biomaterials, Sci China Mater 58, 2015, 241. 10.1007/s40843-015-0037-2Search in Google Scholar

[59] A.H. Lone, G.R. Najar, M.A. Ganie, J.A. Sofi, T. Ali, Biochar for Sustainable Soil Health: A Review of Prospects and Concerns, Pedosphere 25, 2015, 639 10.1016/S1002-0160(15)30045-XSearch in Google Scholar

[60] S. Tsujimora, Recent Advances in Carbon Electrodes for the Development of Enzime-Based Biofuel Cells, Carbon 85, 2015, 444. 10.1016/j.carbon.2014.12.021Search in Google Scholar

[61] J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys Rev B 37, 1988, 6991. 10.1103/PhysRevB.37.6991Search in Google Scholar

[62] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comput Phys 117, 1995, 1. 10.1006/jcph.1995.1039Search in Google Scholar

[63] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J Chem Phys 81,1984, 1. 10.1063/1.447334Search in Google Scholar

[64] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys Rev A 31,1985, 3. 10.1103/PhysRevA.31.1695Search in Google Scholar PubMed

[65] A.K. Cuentas-Gallegos, S. López-Cortina, T. Brousse, D. Pacheco-Catalán, E. Fuentes-Quezada, H. Mosqueda, G. Orozco-Gamboa, Electrochemical study of H3PMo12 retention on Vulcan carbon grafted with NH2 and OH groups, J Solid State Electrochem 20, 2015, 67. 10.1007/s10008-015-2994-5Search in Google Scholar

Received: 2016-8-29
Accepted: 2016-11-11
Published Online: 2016-12-23

© 2016 A.K. Cuentas-Gallegos et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.1515/mesbi-2016-0007/html
Scroll to top button