Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 29, 2017

Mathematical and numerical modeling of plate dynamics with rotational inertia

  • Francesco Bonaldi , Giuseppe Geymonat , Françoise Krasucki and Marina Vidrascu EMAIL logo

Abstract

We give a presentation of the mathematical and numerical treatment of plate dynamics problems including rotational inertia. The presence of rotational inertia in the equation of motion makes the study of such problems interesting. We employ HCT finite elements for space discretization and the Newmark method for time discretization in FreeFEM++, and test such methods in some significant cases: a circular plate clamped all over its lateral surface, a rectangular plate simply supported all over its lateral surface, and an L-shaped clamped plate.

MSC 2010: 74K20; 65M60; 35Q74
  1. Funding: This work has been partially supported by the French Agence Nationale de la Recherche (ANR) under grant ARAMIS (Projet ‘Blanc’, No. ANR 12 BS01-0021) (Analysis of Robust Asymptotic Methods in Numerical Simulation in Mechanics).

Acknowledgment

We thank Frédéric Hecht for his support and collaboration.

References

[1] G. Allaire, Numerical Analysis and Optimization, Oxford University Press, 2007.Search in Google Scholar

[2] G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal. 13 (1976), 564–576.10.1137/0713048Search in Google Scholar

[3] J.-L. Batoz, K.-J. Bathe, and L.-W. Ho, A study of three-node triangular plate bending elements, Int.J. Numer. Methods Engrg. 12 (1980), 1771–1812.10.1002/nme.1620151205Search in Google Scholar

[4] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer-Verlag, 2013.10.1007/978-3-642-36519-5Search in Google Scholar

[5] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Science & Business Media, 2012.Search in Google Scholar

[6] F. Bonaldi, G. Geymonat, F. Krasucki, and M. Serpilli, An asymptotic plate model for magneto-electro-thermo-elastic sensors and actuators, Math. Mech. Solids (2015), published online. 10.1177/1081286515612885.Search in Google Scholar

[7] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, 2002.10.1137/1.9780898719208Search in Google Scholar

[8] D. A. Di Pietro, A. Ern, and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math. 14 (2014), 461–472.10.1515/cmam-2014-0018Search in Google Scholar

[9] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Engrg. 283 (2015), 1–21.10.1016/j.cma.2014.09.009Search in Google Scholar

[10] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 5 – Evolution Problems I, Springer-Verlag, 2000.Search in Google Scholar

[11] T. Dupont, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10 (1973), 880–889.10.1137/0710073Search in Google Scholar

[12] M. Géradin and D. J. Rixen, Mechanical Vibrations: Theory and Application to Structural Dynamics, John Wiley & Sons, 2015.Search in Google Scholar

[13] F. Hecht, New development in FreeFEM++, J. Numer. Math. 20 (2012), 251–265.10.1515/jnum-2012-0013Search in Google Scholar

[14] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, 2012.Search in Google Scholar

[15] J.-L. Lions, E. Magenes, Non–Homogeneous Boundary Value Problems and Applications, Springer-Verlag, 1972.10.1007/978-3-642-65161-8Search in Google Scholar

[16] R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,J. Appl. Mech. 18 (1951), 31–38.10.1007/978-1-4613-8865-4_29Search in Google Scholar

[17] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, 2008.Search in Google Scholar

[18] A. Raoult, Construction d’un modèle d’évolution de plaques avec terme d’inertie de rotation, Ann. Mat. Pura Appl. 139 (1985), 361–400.10.1007/BF01766863Search in Google Scholar

[19] P. A. Raviart and J. M. Thomas, Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles, Masson, 1983.Search in Google Scholar

[20] J. W. S. Baron Rayleigh, The Theory of Sound, 2nd ed., 1894, reprinted Dover edition, 1945.Search in Google Scholar

[21] J. Sanchez-Hubert and E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer–Verlag, Berlin–Heidelberg, 1989.10.1007/978-3-642-73782-4Search in Google Scholar

[22] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, 1973.10.1016/B978-0-12-068650-6.50030-7Search in Google Scholar

Received: 2016-3-23
Revised: 2016-11-10
Accepted: 2017-1-19
Published Online: 2017-1-29
Published in Print: 2018-3-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2016-1020/html
Scroll to top button