Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 2, 2016

Comparative Analysis of Thermoeconomic Evaluation Criteria for an Actual Heat Engine

  • Gülcan Özel , Emin Açıkkalp , Ahmet Fevzi Savaş and Hasan Yamık

Abstract

In the present study, an actual heat engine is investigated by using different thermoeconomic evaluation criteria in the literature. A criteria that has not been investigated in detail is considered and it is called as ecologico-economical criteria (FEC). It is the difference of power cost and exergy destruction rate cost of the system. All four criteria are applied to an irreversible Carnot heat engine, results are presented numerically and some suggestions are made.

Acknowledgments

The authors would like to thank the reviewers for their valuable comments, which have been utilized in improving the quality of the paper.

References

[1] A. Y. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed., McGraw-Hill, New York, 2011.Search in Google Scholar

[2] I. I. Novikov, The efficiency of atomic power stations, J. Nucl. Energy 11 (1958), 25–8.Search in Google Scholar

[3] F. Curzon and B. Ahlborn. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43 (1975), 22–24.10.1119/1.10023Search in Google Scholar

[4] E. Açıkkalp and H. Yamık. Modeling and optimization of maximum available work for irreversible gas power cycles with temperature dependent specific heat. J. Non-Equilib. Thermodyn. 40 (2015), 25–39.10.1515/jnet-2014-0030Search in Google Scholar

[5] A. Vaudrey, F. Lanzetta, and M. Feidt. H. B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines. J. Non-Equilib. Thermodyn. 39 (2014), 199–203.10.1515/jnet-2014-0018Search in Google Scholar

[6] V. Badescu. Lost available work and entropy generation: Heat versus radiation reservoirs. J. Non-Equilib. Thermodyn. 2013;38:313–33.10.1515/jnetdy-2013-0017Search in Google Scholar

[7] A. M. Tsirlin and I. A. Sukin. Finite-time thermodynamics: The maximal productivity of binary distillation and selection of optimal separation sequence for an ideal ternary mixture. J. Non-Equilib. Thermodyn. 39 (2014), 13–25.10.1515/jnetdy-2013-0033Search in Google Scholar

[8] V. Madadi, T. Tavakoli, and A. Rahimi. First and second thermodynamic law analyses applied to a solar dish collector. J. Non-Equilib. Thermodyn. 39 (2014), 183–197.10.1515/jnet-2014-0023Search in Google Scholar

[9] J. Lin, S. Chang, and Z. Xu. Optimal motion trajectory for the four-stroke free-piston engine with irreversible miller cycle via a gauss pseudospectral method. J. Non-Equilib. Thermodyn. 39 (2014), 159–72.10.1515/jnet-2014-0003Search in Google Scholar

[10] V. Madadi, T. Tavakoli, and A. Rahimi. Estimation of heat loss from a cylindrical cavity receiver based on simultaneous energy and exergy analyses. J. Non-Equilib. Thermodyn. 40 (2015), 49–61.10.1515/jnet-2014-0029Search in Google Scholar

[11] F. Angulo-Brown. An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 69 (1991), 7465–9.10.1063/1.347562Search in Google Scholar

[12] Z. Yan. Comment on ecological optimization criterion for finite-time heat-engines. J. Appl. Phys. 73 (1993), 3583.10.1063/1.354041Search in Google Scholar

[13] J. Chen. The maximum power output and maximum efficiency of an irreversible Carnot heat engine. J. Phys. D: Appl. Phys. 27 (1994), 1144–9.10.1088/0022-3727/27/6/011Search in Google Scholar

[14] S. Ozcaynak, S. Goktan, and H. Yavuz. Finite-time thermodynamics analysis of a radiative heat engine with internal irreversibility. J. Phys. D: Appl. Phys. 27 (1994), 1139–43.10.1088/0022-3727/27/6/010Search in Google Scholar

[15] C. Cheng and C. Chen. The ecological optimization of an irreversible Carnot heat-engine. J. Phys. D: Appl. Phys. 30 (1997), 1602–9.10.1088/0022-3727/30/11/009Search in Google Scholar

[16] Z. Yan and G. Lin. Ecological optimization criterion for an irreversible three -heat-source refrigerator. Appl. Energy 66 (2000), 213–24.10.1016/S0306-2619(99)00134-8Search in Google Scholar

[17] D. Xia, L. Chen and F. Sun. Universal ecological performance for endoreversible heat engine cycles. Int. J. Ambient Energy 27 (2001), 15–20.10.1080/01430750.2006.9674997Search in Google Scholar

[18] L. Chen, J. Zhou, F. Sun, and C. Wu. Ecological optimization for generalized irreversible Carnot engines. Appl. Energy 77 (2004), 327–338.10.1016/S0306-2619(03)00138-7Search in Google Scholar

[19] X. Zhu, L. Chen, F. Sun, and C. Wu. Exergy based ecological optimization for a generalized irreversible Carnot refrigerator. J. Energy Inst. 79 (2006), 42–46.10.1179/174602206X90940Search in Google Scholar

[20] O. M. Ibrahim, S. A. Klein, and J. W. Mitchell. Optimum heat power cycles for specified boundary conditions. J. Eng. Gas. Turb. Power 113 (1991), 514.10.1115/1.2906271Search in Google Scholar

[21] A. De Vos. Endoreversible economics. Energy Convers. Manage 1 (1997), 311–17.10.1016/S0196-8904(96)00052-0Search in Google Scholar

[22] B. Sahin and A. Kodal. Finite time thermoeconomic optimization for endoreversible refrigerators and heat pumps. Energy Convers. Manage. 40 (1998), 951–60.10.1016/S0196-8904(98)00153-8Search in Google Scholar

[23] C. Wu, L. Chen, and F. Sun. Effect of the heat transfer law on the finite-time, exergoeconomic performance of heat engines. Energy 21 (1996), 1127–1134.10.1016/0360-5442(96)00073-4Search in Google Scholar

[24] C. Wu, L. Chen, and F. Sun. Effect of the heat transfer law on the finite-time, exergoeconomic performance of Carnot heat pump. Energy Convers. Manage. 39 (1988), 579–88.10.1016/S0196-8904(97)10012-7Search in Google Scholar

[25] Y. Durmusoglu and Y. Ust. Thermodynamic optimization of an irreversible regenerative closed Brayton cycle based on thermoeconomic performance criterion. Appl. Math. Modell. 38 (2014), 5174–5186.10.1016/j.apm.2014.04.017Search in Google Scholar

[26] A. Kodal, B. Sahin, and T. Yilmaz. Effects of internal irreversibility and heat leakage on the finite time thermoeconomic performance of refrigerators and heat pumps. Energy Convers. Manage. 41 (2007), 607–19.10.1016/S0196-8904(99)00129-6Search in Google Scholar

[27] M. H. Ahmadi, H. Sayyaadi, A. H. Mohammadi, and M. A. Barranco-Jimenez. Thermo-economic multi-objective optimization of solar dish-stirling engine by implementing evolutionary algorithm. Energy Convers. Manage. 73 (2013), 370–80.10.1016/j.enconman.2013.05.031Search in Google Scholar

[28] M. H. Ahmadi, M. A. Ahmadi, M. Mehrpooya, H. Hosseinzade, and M. Feidt. Thermodynamic and thermo-economic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration. Energy Convers. Manage. 88 (2014), 1051–9.10.1016/j.enconman.2014.09.041Search in Google Scholar

[29] M. H. Ahmadi, A. A. Ahmadi, R. Bayat, M. Ashouri, and M. Feidt. Thermo-economic optimization of stirling heat pump by using non-dominated sorting genetic algorithm. Energy Convers. Manage. 91 (2015), 315–22.10.1016/j.enconman.2014.12.006Search in Google Scholar

[30] S. A. Sadatsakkak, M. H. Ahmadi, and M. A. Ahmadi. Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energy Convers. Manage. 94 (2015), 124–9.10.1016/j.enconman.2015.01.040Search in Google Scholar

[31] M. A. Barranco-Jimenes and N. Sanchez-Salas. Effect of combined heat transfer on the thermoeconomic performance of an irreversible solar-driven heat engine at maximum ecological conditions. Rev. Mex. Fis 59 (2013), 179–86.Search in Google Scholar

[32] F. Angulo-Brown, G. Ares de Parga, and L. A. Arias-Hernandez. A variational approach to ecological-type optimization criteria for finite-time thermal engine models. J. Phys. D: Appl. Phys. 35 (2002), 1089–93.Search in Google Scholar

[33] S. Velasco, J. M. M. Roco, A. Medina, J. A. White and A. Calvo Hernandez. Optimization of heat engines including the saving of natural resources and the reduction of thermal pollution. J. Phys. D: Appl. Phys. 33 (2000), 355–59.Search in Google Scholar

[34] L. Chen, F. Sun, and C. Wu. Thermo-economics for endoreversible heat-engines. Appl. Energy 81 (2005), 388–96.10.1016/j.apenergy.2004.09.008Search in Google Scholar

[35] L. Chen, X. Zhu, F. Sun, and C. Wu. Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump. Appl. Energy 84 (2007), 78–88.10.1016/j.apenergy.2006.04.003Search in Google Scholar

Received: 2015-8-19
Revised: 2015-11-12
Accepted: 2015-12-10
Published Online: 2016-2-2
Published in Print: 2016-7-1

©2016 by De Gruyter Mouton

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2015-0053/html
Scroll to top button