Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 2, 2014

Detoxification of Echis ocellatus venom-induced toxicity by Annona senegalensis Pers

  • Amlabu Emmanuel EMAIL logo , Ajagun Ebinbin and Wandayi Amlabu

Abstract

Different fractions (I–V) of the methanolic leaf extracts of Annona senegalensis were assessed for their anti-snake venom activities. Fractions III neutralized lethal toxicity induced by Echis ocellatus venom and manifested the same potency as the crude extracts against the venom. The anti-snake venom activity of fraction III was clearly shown by the complete abrogation of venom-induced haemorrhage and the 75% record of surviving mice which were injected with a pre-incubate of venom and extract in the ratio 1:30 w/w after a 24 h. Also, fraction III exhibited a weak inhibitory effect on fibrinogen clotting activity of this venom. The key phytochemicals mediating the activity of this fraction are flavonoids and tannins. The detoxification of this venom by fraction III and the possible mode of action in the pathology of snake envenoming is discussed in this report.

References

1. GutierrezJM, TheakstonRD, WarrellDA. Confronting the neglected problem of snakebite envenoming: the need for a global partnership. PLoS Med2006;3:e150. DOI:10.1371.10.1371/journal.pmed.0030150Search in Google Scholar

2. World Health Organization. Rabies and envenomings: a neglected PublicHealth issue. Report of a consultative meeting. Geneva: WHO, 2007.Search in Google Scholar

3. KasturiratneA, WickremasingheAR, de SilvaN, GunawardenaNK, PathmeswaranA. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med2008;5:1591604.10.1371/journal.pmed.0050218Search in Google Scholar

4. OdeJO, AsuzuIU. The anti-snakebite venom activities of the methanolic extract of the bulb of Crinum jagus (Amaryllidaceae). Toxicon2006;48:33142.10.1016/j.toxicon.2006.06.003Search in Google Scholar

5. BazaaA, MarrakchiN, El AyebM, SanzL, CalveteJJ. Snake venomics: comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebestina. Proteomics2005;5:422335.10.1002/pmic.200402024Search in Google Scholar

6. HavsteenB.Flavonoids, a class of natural products of high pharmacological potency. Biochemical Pharmacology1983;32(7):11418.10.1016/0006-2952(83)90262-9Search in Google Scholar

7. AirdDS. Ophidian envenomation strategies and the role of purines. Toxicon2000;40:33593.10.1016/S0041-0101(01)00232-XSearch in Google Scholar

8. BorgesMH, SoaresAM, RodriguesVM, OliveiraF, FransheschiAM, RucavadoA, et al. Neutralization of proteases from bothrops snake venoms by the aqueous extract from Casearia sylvestris (Flacourtiaceae). Toxicon2001;39:18639.10.1016/S0041-0101(01)00169-6Search in Google Scholar

9. Da SilvaJO, CoppedeJS, FernandesVC, Sant’AnaCD, TicliFK, MazziMV, et al. Antihemorrhagic, antinucleolytic and other antiophidian properties of the aqueous extract from Pentaclethra macroloba. J Ethnopharmacol2005;100:145.10.1016/j.jep.2005.01.063Search in Google Scholar PubMed

10. NishijimaCM, RodriguesCM, SilvaMA, Lopes-FerreiraM, VilegasW, Hiruma-LimaCA. Anti-Hemorrhagic activity of four Brazilian vegetable species against Bothrops jararaca venom. Molecules2009;14:107280.10.3390/molecules14031072Search in Google Scholar PubMed PubMed Central

11. GirishKS, KemparajuK. Inhibition of Naja naja venom hyaluronidase by plant-derived bioactive components and polysaccharides. Biochemistry (Moscow)2005;70:94852.10.1007/s10541-005-0207-zSearch in Google Scholar PubMed

12. OliveiraCZ, MaioranoVA, MarcussiS, Sant’anaCD, JanuarioAH, LourencoMV, et al. Anticoagulant and antifibrinogenolytic properties of the aqueous extract from Bauhinia forficata against snake venoms. J Ethnopharmacol2005;98:21316.10.1016/j.jep.2004.12.028Search in Google Scholar

13. AguiyiJC, GuerrantiR, PaganiR, MarinelloE. Blood chemistry of rats pretreated with Mucuna pruriens seed aqueous extract MP101UJ after Echis carinatus venom challenge. Phytother Res2001;15:71214.10.1002/ptr.913Search in Google Scholar

14. MorsWB, do NascimentoMC, ParenteJP, da SilvaMH, MeloPA, Suarez-KurtzG. Neutralization of lethal and myotoxic activities of South American rattlesnake venom by extracts and constituents of the plant Eclipta prostrate (Asteraceae). Toxicon1989;27:10039.10.1016/0041-0101(89)90151-7Search in Google Scholar

15. MaioranoVA, MarcussiS, DaherMA, OliveiraCZ, CoutoLB, GomesAO, et al. Antiophidian properties of the aqueous extract of Mikania glomerata. J Ethnopharmacol2005;102:36470.10.1016/j.jep.2005.06.039Search in Google Scholar

16. RatanabanangkoonK, CherdchuC, ChudapongseP. Studies on the cobra neurotoxin inhibiting activity in an extract of Curcuma sp. (Zingiberaceae) rhizome. Southeast Asian J Trop Med Public Health1993;24:17885.Search in Google Scholar

17. PanfoliI, CalziaD, RaveraS, MorelliA. Inhibition of hemorrhagic snake venom components: old and new approaches. Toxins2010;2:41727.10.3390/toxins2040417Search in Google Scholar

18. NeuwingerHD. Annona senegalensis Persoon 1806. In: African ethnobotany-poisons and drugs. Chemistry-pharmacology-toxicology. New York: Chapman and Hall, 1996:4753.Search in Google Scholar

19. OwuorBO, KisangauDP. Kenyan medicinal plants used as antivenin: a comparison of plant usage. J Ethnobiology Ethnomedicine2006;2:7.10.1186/1746-4269-2-7Search in Google Scholar

20. OkoliCO, OnyetoCA, AkpaBP, EzikeAC, AkahPA, OkoyeTC. Neuropharmacological evaluation of Annona senegalensis leaves. Afr J Biotechnol2010;9:843544.Search in Google Scholar

21. SofowaraA. Medicinal plants and traditional medicine in Africa. United Kingdom, Chichester: John Wiley and Sons, 1982.Search in Google Scholar

22. CavinatoRA, RemoldH, KipnisTL. Purification and characterization of thrombin like activity from the venom of Bothrops atrox of different geographic regions. Toxicon1998;36:25768.10.1016/S0041-0101(97)00129-3Search in Google Scholar

23. TheakstonRD, ReidHA. Development of simple standard assay procedures for the characterization of snake venoms. Bull WHO1983;61:94956.Search in Google Scholar

24. TheakstonRD, FanHW, WarrellDA, Da SilvaWD, WardSA, HigashiHG. The Butantan Institute Antivenom Study Group (BIASG). Use of immunoassay in assessing the efficacy of three Brazilian Bothrops antivenoms. Am J Trop Med Hyg1992;47:593604.10.4269/ajtmh.1992.47.593Search in Google Scholar

25. World Health Organization. Progress in the characterization of venom and the standardization of antivenoms. Offset publication 58. Geneva: World Health Organization, 1981.Search in Google Scholar

26. GutierrezJM, RucavadoA. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie2000;82:84150.10.1016/S0300-9084(00)01163-9Search in Google Scholar

27. Mourada-SilvaAM, LaingGD, PaineMJ, DennisonJM, PolitiV, CramptonJM, et al. Processing of pro-tumour necrosis factor-α. Eur J Immunol1996;26:20005.Search in Google Scholar

28. AbubakarMS, SuleMI, PatehUU, AbdurahmanEM, HarunaAK, JahunBM. In vitro snake venom detoxifying action of the leaf extract of Guiera senegalensis. J Ethnopharmacol2000;69:2537.10.1016/S0378-8741(99)00128-2Search in Google Scholar

29. BorgesMH, AlvesDL, RaslanDS, Pilo–VelosoD, RodriguesVM, Homsi–BrandeburgoMI, et al. Neutralizing properties of Musa paradisiaca L. (Musaceae) juice on phospholipase A2, myotoxic, hemorrhagic and lethal activities of crotalidae venoms. J Ethnopharmacol2005;98:219.10.1016/j.jep.2004.12.014Search in Google Scholar

30. LeanpolchareanchaiJ, PithayanukulP, BavovadaR. Anti-necrosis potential of polyphenols against snake venoms. Immunopharmacol Immunotoxicol2009. DOI:10.1080/08923970902821702.Search in Google Scholar

31. LeanpolchareanchaiJ, PithayanukulP, BavovadaR,SaparpakornP. Molecular docking studies and anti-enzymatic activities of Thai mango seed kernel extract against snake venoms. Molecules2009;14:140422.10.3390/molecules14041404Search in Google Scholar

32. OkonogiT, HattoriZ, OgisoA, MitsuiS. Detoxification bypersimmon tannin of snake venoms and bacterial toxins. Toxicon1979;17:5247.10.1016/0041-0101(79)90287-3Search in Google Scholar

33. PimolpanP, JirapornL, PatchreenartS. Molecular docking studies and anti-snake venom metalloproteinase activity of Thai mango seed kernel extract. Molecules2009;14:3198213.10.3390/molecules14093198Search in Google Scholar PubMed PubMed Central

34. PithayanukulP, LeanpolchareanchaiJ, BavovadaR. Inhibitory effect of tea polyphenols on local tissue damage induced by snake venoms. Phytother Res2009. DOI:10.1002/ptr.2903.Search in Google Scholar

35. PithayanukulP, RuenraroengsakP, BavovadaR, PakmaneeN, SuttisriR, Saen–OonS. Inhibition of Naja kaouthia venom activities by plant polyphenols. J Ethnopharmacol2005;97:52733.10.1016/j.jep.2004.12.013Search in Google Scholar PubMed

Received: 2013-12-20
Accepted: 2014-2-27
Published Online: 2014-5-2
Published in Print: 2014-6-1

©2014 by Walter de Gruyter Berlin / Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/jcim-2012-0058/html
Scroll to top button