Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 9, 2013

Texaphyrins and water-soluble zinc(II) ionophores: development, mechanism of anticancer activity, and synergistic effects

  • Christian Preihs , Darren J. Magda and Jonathan L. Sessler EMAIL logo

Abstract

Texaphyrins, first prepared by Sessler and coworkers in the 1980s, represent early examples of expanded porphyrins. This class of pentaaza, oligopyrrolic macrocycles demonstrates excellent tumor localization and metal-chelating properties. In biological milieus, texaphyrins act as redox mediators and are able to produce reactive oxygen species. Furthermore, texaphyrins have been shown to upregulate zinc in vivo, an important feature that inspired us to develop new zinc ionophores that might allow the same function to be elicited but via a simpler chemical means. In this review, the basic properties of texaphyrins and the zinc ionophores they helped spawn will be discussed in the cadre of developing an understanding that could lead to the preparation of new, redox-active anticancer agents.


Corresponding author: Jonathan L. Sessler, Department of Chemistry and Biochemistry, University of Texas, 105 E. 24th Street, Stop A5300, Austin, TX 78712-1224, USA; and Department of Chemistry, Yonsei University, Seoul 120-749, Korea, e-mail:

This work was supported by the Cancer Prevention and Research Institute of Texas (CPRIT; grant RP 120393 to J.L.S.), the U.S. National Cancer Institute (grant CA 68682 to J.L.S.), and the Robert A. Welch Foundation (grant F-1018 to J.L.S.). All authors contributed either to the writing of this article or to the development of the original reports upon which it is based. The authors declare no competing financial interests. All authors have given approval to the final version of the manuscript.

References

Adams, G. E.; Flockhart, I. R.; Smithen, C. E.; Stratford, I. J.; Wardman, P.; Watts, M. E. A correlation between structures, one-electron reduction potentials, and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers. Radiat. Res. 1976, 67, 9–20.Search in Google Scholar

Altekruse, S. F.; Kosary, C. L.; Krapcho, M.; Neyman, N.; Aminou, R.; Waldron, W.; Ruhl, J.; Howlader, N.; Tatalovich, Z.; et al. (eds). SEER Cancer Statistics Review, 1975–2007, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2007/, based on November 2009 SEER data submission, posted to the SEER web site, 2010.Search in Google Scholar

American Cancer Society, In Cancer Facts & Figures 2012; American Cancer Society: Atlanta, GA, 2012.Search in Google Scholar

Andrews, G. K. Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 2001, 14, 223–237.10.1023/A:1012932712483Search in Google Scholar

Biaglow, J. E.; Mitchell, J. B.; Held, K. The Importance of peroxide and superoxide un X-ray response. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 665–669.Search in Google Scholar

Biaglow, J. E.; Donahue, J.; Tuttle, S.; Held, K.; Chrestensen, C.; Mieyal, J. A method for measuring disulfide reduction by cultured mammalian cells: relative contributions of glutathione-dependent and glutathione-independent mechanisms. Anal. Biochem. 2000, 281, 77–86.Search in Google Scholar

Buettner, G. R. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 1993, 300, 535–543.Search in Google Scholar

Bump, E. A.; Brown, J. M. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol. Ther. 1990, 47, 117–136.Search in Google Scholar

Byrne, A. T.; Magda, D.; Nguyan, H.; Miles, D.; Boswell, G.; Miller, R. A. Selective tumor localization with motexafin gadolinium (MGd) and motexafin lutetium (MLu) occurs by active transport. Proc. Am. Assoc. Cancer Res. 2003, 44, 393–397.Search in Google Scholar

Carde, P.; Timmerman, R.; Mehta, M. P.; Koprowski, C. D.; Ford, J.; Tishler, R. B.; Miles, D.; Miller, R. A.; Renschler, M. F. Multicenter phase Ib/II trial of the radiation enhancer motexafin gadolinium in patients with brain metastases. J. Clin. Oncol. 2001, 19, 2074–2083.Search in Google Scholar

Cherian, M. G.; Jayasurya, A.; Bay, B. H. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat. Res. 2003, 533, 201–209.Search in Google Scholar

Costello, L. C.; Franklin, R. B. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol. Cancer 2006, 5: 17.10.1186/1476-4598-5-17Search in Google Scholar

Costello, L. C.; Franklin, R. B. Zinc is decreased in prostate cancer: an established relationship of prostate cancer! J. Biol. Inorg. Chem. 2011, 16, 3–8.Search in Google Scholar

Cousins, R. J.; Blanchard, R. K.; Popp, M. P.; Liu, L.; Cao, J.; Moore, J. B.; Green, C. L. A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc. Natl. Acad. Sci. USA 2003, 100, 6952–6957.Search in Google Scholar

Doose, C. A.; Ranke, J.; Stock, F.; Bottin-Weber, U.; Jastorff, B. Structure-activity relationships of pyrithiones-IPC-81 toxicity tests with the antifouling biocide zinc pyrithione and structural analogs. Green Chem. 2004, 6, 259–266.Search in Google Scholar

Dubi, N.; Gheber, L.; Fishman, D.; Sekler, I.; Hershfinkel, M. Extracellular zinc and zinc-citrate, acting through a putative zinc-sensing receptor, regulate growth and survival of prostate cancer cells. Carcinogenesis 2008, 29, 1692–1700.Search in Google Scholar

Evens, A. M.; Balasubramanian, L.; Gordon, L. Motexafin gadolinium induces oxidative stress and apoptosis in hematologic malignancies. Curr. Treat. Options Oncol. 2005, 6, 289–296.Search in Google Scholar

Feng, P.; Li, T. L.; Guan, Z. X.; Franklin, R. B.; Costello, L. C. Effect of zinc on prostatic tumorigenicity in nude mice. Ann. NY Acad. Sci. 2003, 1010, 316–320.Search in Google Scholar

Feng, P.; Li, T.; Guan, Z.; Franklin, R. B.; Costello, L. C. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol. Cancer 2008, 7, 25–30.Search in Google Scholar

Franklin, R. B.; Costello, L. C. The important role of the apoptotic effects of zinc in the development of cancers. J. Cell. Biochem. 2009, 106, 750–757.Search in Google Scholar

Franklin, R. B.; Feng, P.; Milon, B.; Desouki, M. M.; Singh, K. K.; Kajdacsy-Balla, A.; Bagasra, O.; Costello, L. C. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol. Cancer 2005, 4, 32–45.Search in Google Scholar

Gee, K. R.; Zhou, Z. L.; Ton-That, D.; Sensi, S. L.; Weiss, J. H. Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium 2002, 31, 245–251.Search in Google Scholar

Gibson, W. B.; Jeffcoat, A. R.; Turan, T. S.; Wendt, R. H.; Hughes, P. F.; Twine, M. E. Zinc pyridinethione: serum metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol. 1982, 62, 237–250.Search in Google Scholar

Giedroc, D. P.; Chen, X.; Apuy, J. L. Metal response element (MRE)-binding transcription factor–2 (MTF-1): structure, function, and regulation. Antioxid. Redox Signal 2001, 3, 577–596.Search in Google Scholar

Golovine, K.; Makhov, P.; Uzzo, R. G.; Shaw, T.; Kunkle, D.; Kolenko, V. M. Overexpression of the zinc uptake transporter hZIP1 inhibits nuclear factor-κB and reduces the malignant potential of prostate cancer cells in vitro and in vivo. Clin. Cancer Res. 2008, 14, 5376–5384.Search in Google Scholar

Guldi, D. M.; Mody, T. D.; Gerasimchuk, N. N.; Magda, D.; Sessler, J. L. Influence of large metal cations on the photophysical properties of texaphyrin, a rigid aromatic chromophore. J. Am. Chem. Soc. 2000, 122, 8289–8298.Search in Google Scholar

Hasumi, M.; Suzuki, K.; Matsui, H.; Koike, H.; Ito, K.; Yamanaka, H. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett. 2003, 200, 187–195.Search in Google Scholar

Hemmi, G. W. Ph.D. Dissertation, The University of Texas at Austin, 1992, pp. 41–43.Search in Google Scholar

Hirsila, M.; Koivunen, P.; Xu, L.; Seeley, T.; Kivirikko, K. I.; Myllyharju, J. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J. 2005, 19, 1308–1310.Search in Google Scholar

Jasim, S.; Tjalve, H. Effect of zinc pyridinethione on the tissue disposition of nickel and cadmium in mice. Acta Pharmacol. Toxicol. (Copenhagen) 1986a, 59, 204–208.10.1111/j.1600-0773.1986.tb00155.xSearch in Google Scholar

Jasim, S.; Tjalve, H. Effect of sodium pyridinethione on the uptake and distribution of nickel, cadmium and zinc in pregnant and nonpregnant mice. Toxicology 1986b, 38, 327–350.10.1016/0300-483X(86)90148-4Search in Google Scholar

Jeffcoat, A. R.; Gibson, W. B.; Rodriguez, P. A.; Turan, T. S.; Hughes, P. F.; Twine, M. E. Zinc pyridinethione: urinary metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol. 1980, 56, 141–154.Search in Google Scholar

Johnson, L. A.; Kanak, M. A.; Kajdacsy-Balla, A.; Pestaner, J. P.; Bagasra, O. Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods 2010, 52, 316–321.Search in Google Scholar

Jungbauer, B. Pharmacyclics’ Xcytrin Gets FDA “Not Approvable” for NSCLC Patients With Brain Metastases, The Pink Sheet, December 2007.Search in Google Scholar

Kagi, J. H. R.; Schaffer, A. Bichemistry of metallothionein. Biochemistry 1988, 27, 8509–8515.Search in Google Scholar

Koch, C. J.; Biaglow, J. E. Toxicity, radiation sensitivity modification, and metabolic effects of dehydroascorbate and ascorbate in mammalian cells. J. Cell. Physiol. 1978, 94, 299–306.Search in Google Scholar

Langmade, S. J.; Ravindra, R.; Daniels, P. J.; Andrews, G. K. The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J. Biol. Chem. 2000, 275, 34803–34809.Search in Google Scholar

Lecane, P.; Karaman, M. W.; Sirisawad, M.; Naumovski, L.; Miller, R. A.; Hacia, J. G.; Magda, D. Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005, 65, 11676–11688.Search in Google Scholar

Lichtlen, P.; Schaffner, W. Putting its fingers on stressful situations: the heavy metal-regulatory transcription factor MTF-1. Bioessays 2001, 23, 1010–1017.10.1002/bies.1146Search in Google Scholar PubMed

Lichtlen, P.; Wang, Y.; Belser, T.; Georgiev, O.; Certa, U.; Sack, R.; Schaffner, W. Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res. 2001, 29, 1514–1523.Search in Google Scholar

Lin, S.-F.; Wei, H.; Maeder, D.; Franklin, R. B.; Feng, P. Profiling of zinc-altered gene expression in human prostate normal vs. cancer cells: A time course study. J. Nutr. Biochem. 2009, 20, 1000–1012.Search in Google Scholar

Magda, D.; Lepp, C.; Gerasimchuk, N.; Lee, I.; Sessler, J. L.; Lin, A.; Biaglow, J.; Miller, R. A. Redox cycling by motexafin gadolinium enhances cellular response to ionizing radiation by forming reactive oxygen species. Int. J. Radiat. Biol. Oncol. Phys. 2001, 51, 1025–1036.Search in Google Scholar

Magda, D.; Lepp, C.; Gerasimchuk, N.; Lecane, P.; Miller, R. A.; Biaglow, J. E.; Sessler, J. L. Motexafin gadolinium reacts with ascorbic acid to produce reactive oxygen species. Chem. Comm. 2002, 2730–2731.10.1039/b208760jSearch in Google Scholar PubMed

Magda, D.; Gerasimchuk, N.; Wang, Z.; Sessler, J. L.; Miller, R. A. Mechanistic studies of motexafin gadolinium (Xcytrin®): a redox active agent that reacts with electron-rich biological substances. In ACS Symposium Series, Vol. 903, Medicinal Inorganic Chemistry. 2005a, pp. 110–136.Search in Google Scholar

Magda, D.; Lecane, P.; Miller, R. A.; Lepp, C.; Miles, D.; Mesfin, M.; Biaglow, J. E.; Ho, V. V.; Chawannakul, D.; Nagpal, S.; et al. Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005b, 65, 3837–3845.Search in Google Scholar

Magda, D.; Lecane, P.; Wang, Z.; Hu, W.; Thiemann, P.; Ma, X.; Dranchak, P.; Wang, X.; Lynch, V.; Wei, W.; et al. Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res. 2008, 68, 13, 5318–5325.Search in Google Scholar

McHaffie, D. R.; Chabot, P.; Dagnault, A.; Suh, J. H.; Fortin, M. A.; Chang, E.; Timmerman, R.; Souhami, L.; Grecula, J.; Nabid, A.; et al. Safety and feasibility of motexafin gadolinium administration with whole brain radiation therapy and stereotactic radiosurgery boost in the treatment of ≤6 brain metastases: a multiinstitutional phase II trial. J. Neurooncol. 2011, 105, 301–308.Search in Google Scholar

Mehta, M. P.; Shapiro, W. R.; Glantz, M. J.; Patchell, R. A.; Weitzner, M. A.; Meyers, C. A.; Schultz, C. J.; Roa, W. H.; Leibenhaut, M.; Ford, J.; et al. Lead-in phase to randomized trial of motexafin gadolinium and whole-brain radiation for patients with brain metastases: Centralized assessment of magnetic resonance imaging, neurocognitive, and neurologic end points. J. Clin. Oncol. 2002, 20, 3445–3453.Search in Google Scholar

Mehta, M. P.; Rodrigus, P.; Terhaard, C. H. J.; Rao, A.; Suh, J.; Roa, W.; Souhami, L.; Bezjak, A.; Leibenhaut, M.; Komaki, R.; et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J. Clin. Oncol. 2003, 21, 2529–2536.Search in Google Scholar

Mikheev, N. B.; Kamenskaya, A. N. Complex formation of the lanthanides and actinides in lower oxidation states. Coord. Chem. Rev. 1991, 109, 1–59.Search in Google Scholar

Miller, R. A.; Woodburn, K.; Fan, Q.; Renschler, M.; Sessler, J. L.; Koutcher, J. A. In vivo animal studies with gadolinium(III) texaphyrin as a radiation enhancer. Int. J. Radiat. Oncol. 1999, 45, 981–989.Search in Google Scholar

Mody, T. D.; Fu, L.; Sessler, J. L. Texaphyrins: Synthesis and Development of a Novel Class of Therapeutic Agents. In Progress in Inorganic Chemistry. Karlin, K. D., Ed., J. Wiley & Sons: New York, 2001; Vol. 49, pp. 551–598.Search in Google Scholar

Preihs, C.; Arambula, J. F.; Magda, D.; Jeong, H.; Yoo, D.; Cheon, J.; Siddik, Z. H.; Sessler, J. L. Recent developments in texaphyrin chemistry and drug discovery. Inorg. Chem. 2013, DOI: 10.1021/ic400226g.10.1021/ic400226gSearch in Google Scholar PubMed PubMed Central

Rosenthal, D. I.; Nurenberg, P.; Becerra, C. R.; Frenkel, E. P.; Carbone, D. P.; Lum, B. L.; Miller, R.; Engel, J.; Young, S.; Miles, D.; et al. A phase I single-dose trial of gadolinium texaphyrin (Gd-Tex), a tumor selective radiation sensitizer detectable by magnetic resonance imaging. Clin. Cancer Res. 1999, 5, 739–745.Search in Google Scholar

Schofield, C. J.; Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 2004, 5, 343–354.10.1038/nrm1366Search in Google Scholar PubMed

Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732.10.1038/nrc1187Search in Google Scholar PubMed

Sessler, J. L.; Miller, R. A. Texaphyrins. New drugs with diverse clinical applications in radiation and photodynamic therapy. Biochem. Pharmacol. 2000, 59, 733–739.Search in Google Scholar

Sessler, J. L.; Seidel, D. Synthetic expanded porphyrin chemistry. Angew. Chem. Int. Ed. Engl. 2003, 42, 5134–5175.10.1002/anie.200200561Search in Google Scholar PubMed

Sessler, J. L.; Hemmi, G.; Mody, T. D.; Murai, T.; Burrell, A.; Young, S. W. Texaphyrins: synthesis and applications. Acc. Chem. Res. 1994, 27, 43–50.Search in Google Scholar

Sessler, J. L.; Tvermoes, N. A.; Guldi, D. M.; Mody, T. D.; Allen, W. A. One-electron reduction and oxidation studies of the radiation sensitizer gadolinium(III) texaphyrin (PCI-0120) and other water soluble metallotexaphyrins. J. Phys, Chem. A 1999, 103, 787–794.Search in Google Scholar

Sessler, J. L.; Tvermoes, N. A.; Guldi, D. M.; Hug, G. L.; Mody, T. D.; Magda, D. Pulse radiolytic studies of metallotexaphyrins in the presence of oxygen: Relevance of the equilibrium with superoxide anion to the mechanism of action of the radiation sensitizer motexafin gadolinium (Gd-Tex2+, Xcytrin®). J. Phys. Chem. B 2001, 105, 1452–1457.Search in Google Scholar

Trock, B. J. Application of metabolomics to prostate cancer. Urol. Oncol. 2011, 29, 572–581.Search in Google Scholar

Vallee, B. L. Introduction to metallothionein. Method Enzymol. 1991, 205, 3–7.Search in Google Scholar

Wong, P.-F.; Abubakar, S. High intracellular Zn2+ ions modulate the VHR, ZAP-70 and ERK activities of LNCaP prostate cancer cells. Cell Mol. Biol. Lett. 2008, 13, 375–390.Search in Google Scholar

Woodburn, K. Intracellular localization of the radiation sensitizer motexafin gadolinium using interferometric Fourier fluorescence microscopy. J. Pharmacol. Exp. Therapeutics 2001, 297, 888–894.Search in Google Scholar

Yang, J.; Yu, H.; Sun, S.; Zhang, L.; Das, U. N.; Ruan, H.; He, G.; Shen, S. Mechanism of free Zn2+ enhancing inhibitory effects of EGCG on the growth of PC-3 cells: Interactions with mitochondria. Biol. Trace Elem. Res. 2009, 131, 298–310.Search in Google Scholar

Yoo, D.; Jeong, H.; Preihs, C.; Choi, J.-S.; Shin, T.-H.; Sessler, J. L.; Cheon, J. Double effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angew. Chem., Int. Ed. 2012, 51, 12482–12485.Search in Google Scholar

Young, S. W.; Sidhu, M. K.; Qing, F. Preclinical evaluation of gadolinium(III) texaphyrin complex: a new paramagnetic contrast agent for magnetic resonance imaging. Invest. Radiol. 1994, 29, 330–338.Search in Google Scholar

Young, S. W.; Quing, F.; Harriman, A.; Sessler, J. L.; Dow, W. C.; Mody, T. D.; Hemmi, G.; Hao, Y.; Miller, R. A. Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. Proc. Natl. Acad. Sci. USA 1996, 93, 66106615. Correction: Proc. Natl. Acad. Sci. USA 1999, 96, 2569.Search in Google Scholar

Received: 2013-6-2
Accepted: 2013-7-4
Published Online: 2013-08-09
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/irm-2013-0001/html
Scroll to top button