Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 24, 2020

Heterogeneous PVC cation-exchange membrane synthesis by electrospinning for reverse electrodialysis

  • Jesús Salvador Jaime-Ferrer , Marcela Mosqueda-Quintero , Victor A. Suárez-Toriello , Sean M. Anderson , Oscar A. González Vargas and Liliana Villafaña-López EMAIL logo

Abstract

Blue energy (or salinity gradient energy) is a renewable, carbon-neutral, and continuous electrical energy source that can be obtained via the reverse electrodialysis (RED) technique. The viability of this technology strictly depends on the performance and cost of the ion-exchange membranes (IEMs) that compose the RED units; designing the optimal membrane represents a critical challenge due to the complex relation between the performance, properties, and structure of the membrane. In this work, we present our findings on an electrospun cation-exchange membrane based on polyvinyl chloride (PVC), a strongly acidic cation exchange resin, with sodium dodecyl sulfate (SDS) as an additive. We contrast it with a similar membrane produced with the more conventional casting solution technique. The electrospinning technique provides thinner and more homogeneous membranes than those synthesized via casting. The membranes were characterized using morphological, spectroscopic, and analytical methods. Scanning electron microscopy images depicted an intertwined nanofiber mesh within the membrane. We also synthesized the same electrospun cation exchange membrane without SDS; this membrane presented 63% less swelling, and a significant increase in the fixed charge density (CDfix) (119.6 meq/g) when compared to its casting solution counterpart (34 meq/g). This suggests an enhanced permselectivity, and thus better performance for blue energy generation in RED units.


Corresponding author: Liliana Villafaña-López, CIATEC A.C., Centro de Innovación Aplicada en Tecnologías Competitivas, Omega 201, Col. Industrial Delta, 37545León, GTO, Mexico, E-mail:

Funding source: Fondo CONACYT-Secretaria de Energía-Sustentabilidad Energética

Award Identifier / Grant number: FSE-2013-05-271037

Acknowledgments

The authors gratefully acknowledge support from CONACYT-Mexico and SENER-México through the “Fondo CONACYT-SENER-Sustentabilidad Energética” project FSE-2013-05-271037. M.M.-Q gratefully acknowledges scholarship funding from CONACYT-SENER. V.A.S.-T. acknowledges the Cátedras-CONACYT program, project 965.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by “Fondo CONACYT-SENER-Sustentabilidad Energética” under grant FSE-2013-05-271037.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Avci, A. H. 2020. “Sulfonated Polyethersulfone Based Cation Exchange Membranes for Reverse Electrodialysis Under High Salinity Gradients.” Journal of Membrane Science 595: 117585, https://doi.org/10.1016/j.memsci.2019.117585.Search in Google Scholar

Besha, A. T., M. T. Tsehaye, D. Aili, W. Zhang, and R. A. Tufa. 2020. “Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis.” Membranes 10 (1): 7, https://doi.org/10.3390/membranes10010007.Search in Google Scholar PubMed PubMed Central

Chiu, H. T., J. M. Lin, T. H. Cheng, and S. Y. Chou. 2011. “Fabrication of Electrospun Polyacrylonitrile Ion-Exchange Membranes for Application in Lysozym.” eXPRESS Polymer Letters 5 (4): 308–17, https://doi.org/10.3144/expresspolymlett.2011.31.Search in Google Scholar

Dan-asabe, B., S. A. Yaro, D. S. Yawas, S. Y. Aku, I. A. Samotu, U. Abubakar, and D. O. Obada. 2016. “Mechanical, Spectroscopic and Micro-Structural Characterization of Banana Particulate Reinforced PVC Composite as Piping.” Material Tribology in Industry 38 (2): 255–67, http://www.tribology.rs/journals/2016/2016-2/14.pdf.Search in Google Scholar

Ding, B., X. Wang, and J. Yu. 2019. Electrospinning: Nanofabrication and Applications, 1st ed. Netherland: Elsevier, https://doi.org/10.1016/C2016-0-01374-8.Search in Google Scholar

Długołęcki, P., K. Nymeijer, S. Metz, and M. Wessling. 2008. “Current Status of Ion Exchange Membranes for Power Generation from Salinity Gradients.” Journal of Membrane Science 319 (1–2): 214–22, https://doi.org/10.1016/j.memsci.2008.03.037.Search in Google Scholar

Fisher, S. and R. Kunin. 1955. “Routine Exchange Capacity Determinations of Ion Exchange Resins.” Analytical Chemistry 27 (7): 1191–4, https://doi.org/10.1021/ac60103a052.Search in Google Scholar

Fujii, S., K. Takeichi, and M. Higa. 2012. “Optimization of RED Test Cell for PVA Based Ion-Exchange Membranes.” Procedia Engineering 44: 1300–2, https://doi.org/10.1016/j.proeng.2012.08.762.Search in Google Scholar

Güler, E. and K. Nijmeijer. 2018. “Reverse Electrodialysis for Salinity Gradient Power Generation: Challenges and Future Perspectives.” Journal of Membrane Science & Research 4: 108–10, https://doi.org/10.22079/JMSR.2018.86747.1193.Search in Google Scholar

Güler, E., Y. Zhang, M. Saakes, and K. Nijmeijer. 2012. “Tailor-Made Anion-Exchange Membranes for Salinity Gradient Power Generation Using Reverse Electrodialysis.” ChemSusChem 5: 2262–70, https://doi.org/10.1002/cssc.201200298.Search in Google Scholar PubMed

Hong, J. G. and Y. Chen. 2014. “Nanocomposite Reverse Electrodialysis (RED) Ion-Exchange Membranes for Salinity Gradient Power Generation.” Journal of Membrane Science 460: 139–47, https://doi.org/10.1016/j.memsci.2014.02.027.Search in Google Scholar

Hong, J. G., S. Glabman, and T. Chen. 2015. “Effect of Inorganic Filler Size on Electrochemical Performance of Nanocomposite Cation Exchange Membranes for Salinity Gradient Power Generation.” Journal of Membrane Science 482: 33–41, https://doi.org/10.1016/j.memsci.2015.02.018.Search in Google Scholar

Hong, J. G., B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei, and Y Chen. 2015. “Potential Ion Exchange Membranes and System Performance in Reverse Electrodialysis for Power Generation: A Review.” Journal of Membrane Science 486: 71–88, https://doi.org/10.1016/j.memsci.2015.02.039.Search in Google Scholar

Hong, J. G., T.- W. Park, and Y. Dhadake. 2019. “Property Evaluation of Custom-Made Ion Exchange Membranes for Electrochemical Performance in Reverse Electrodialysis Application.” Journal of Electroanalytical Chemistry 850: 113437, https://doi.org/10.1016/j.jelechem.2019.113437.Search in Google Scholar

Hosseini, S. M., A. Gholami, S. S. Madaeni, A. R. Moghadassi, and A. R. Hamidi. 2012. “Fabrication of (Polyvinyl Chloride/Cellulose Acetate) Electrodialysis Heterogeneous Cation Exchange Membrane: Characterization and Performance in Desalination Process.” Desalination 306: 51–59, https://doi.org/10.1016/j.desal.2012.07.028.Search in Google Scholar

Hosseini, S. M., B. Rahzani, H. Asiani, A. R. Khodabakhsi, A. R. Hamidi, S. S. Madaeni, A. R. Moghadassi, and A. Seidypoor. 2014. “Surface Modification of Heterogeneous Cation Exchange Membranes by Simultaneous Using Polymerization of (Acrylic Acid-Co-Methyl Methacrylate): Membrane Characterization in Desalination Process.” Desalination 345: 13–20, https://doi.org/10.1016/j.desal.2014.04.028.Search in Google Scholar

Hosseini, S. M., H. Alibakhshi, E. Jashni, F. Parvizian, J. N. Shen, M. Taheri, M. Ebrahimi, and N. Rafiei. 2020. “A Novel Layer-By-Layer Heterogeneous Cation Exchange Membrane for Heavy Metal Ions Removal from Water.” Journal of Hazardous Materials 381: 120884, https://doi.org/10.1016/j.jhazmat.2019.120884.Search in Google Scholar PubMed

Jung, R. M., F. D. Horgen, S. V. Orski, V. Rodriguez, K. L. Beers, G. H. Balazs, T. T. Jones, T. M. Work, K. C. Brignac, S.- J. Royer, K. D. Hyrenbach, B. A. Jensen, and J. M. Lynch. 2018. “Validation of ATR FT-IR to Identify Polymers of Plastic Marine Debris, Including Those Ingested by Marine Organisms.” Marine Pollution Bulletin 127: 704–16, https://doi.org/10.1016/j.marpolbul.2017.12.061.Search in Google Scholar PubMed

Khodabakhshi, A. R., S. S. Madaeni, and S. M. Hosseini. 2011. “Investigation of Electrochemical and Morphological Properties of S-PVC Based Heterogeneous Cation-Exchange Membranes Modified by Sodium Dodecyl Sulphate.” Separation and Purification Technology 77: 220–9, https://doi.org/10.1016/j.seppur.2010.12.009.Search in Google Scholar

Kim, H.- K., M.- S. Lee, S.- Y. Lee, Y.- W. Choi, N.- J. Jeong, and C.- S. Kim. 2015. “High Power Density of Reverse Electrodialysis with Pore-Filling Ion Exchange Membranes and a High Open-Area Spacer.” Journal of Materials Chemistry A 3: 16302–6, https://doi.org/10.1039/c5ta03571f.Search in Google Scholar

Matsumoto, H. and A. Tanioka. 2011. “Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation.” Membranes 1 (3): 249–64, https://doi.org/10.3390/membranes1030249.Search in Google Scholar PubMed PubMed Central

Matsumoto, H., Y. Wakamatsu, M. Minagawa, and A. Tanioka. 2006. “Preparation of Ion-Exchange Fiber Fabrics by Electrospray Deposition.” Journal of Colloid and Interface Science 293 (1): 143–50, https://doi.org/10.1016/j.jcis.2005.06.022.Search in Google Scholar

Mei, Y. and C. Tang. 2018. “Recent Developments and Future Perspectives of Reverse Electrodialysis Technology: A Review.” Desalination 425: 156–74, https://doi.org/10.1016/j.desal.2017.10.021.Search in Google Scholar

Moreno, J., S. Grasman, R. van Engelen, and K. Nijmeijer. 2018. “Upscaling Reverse Electrodialysis.” Environmental Science & Technology 52 (18): 10856–63, https://doi.org/10.1021/acs.est.8b01886.Search in Google Scholar

Najafi, M. and M. W. Frey. 2020. “Electrospun Nanofibers for Chemical Separation.” Nanomaterials 10 (5): 982, https://doi.org/10.3390/nano10050982.Search in Google Scholar

Nijmeijer, K. and S. Metz. 2010. “Salinity Gradient Energy.” In Sustainable Water for the Future: Water Recycling versus Desalination, Vol. 2, edited by I. C. Escobar and A. I. Schäfer, 95–139, Amsterdam: Elsevier, https://doi.org/10.1016/S1871-2711(09)00205-0.Search in Google Scholar

Pan, J., L Ge, X. Lin, L. Wu, B. Wu, and T. Xu. 2014. “Cation Exchange Membranes from Hot-Pressed Electrospun Sulfonated Poly(Phenyleneoxide) Nanofibers for Alkali Recovery.” Journal of Membrane Science 470: 479–85, http://dx.doi.org/10.1016/j.memsci.2014.07.061.10.1016/j.memsci.2014.07.061Search in Google Scholar

Pattle, R. 1954. “Production of Electric Power by Mixing Fresh and Salt Water in the Hydroelectric Pile.” Nature 174: 660, https://doi.org/10.1038/174660a0.Search in Google Scholar

Salem, I.A. 2001. “Activation of H2O2 by Amberlyst-15 Resin Supported with Copper(II)-Complexes Towards Oxidation of Crystal Violet.” Chemosphere 44 (5): 1109–19, https://doi.org/10.1016/S0045-6535(00)00478-1.Search in Google Scholar

Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. “NIH Image to ImageJ: 25 Years of Image Analysis.” Nature Methods 9: 671–5, https://doi.org/10.1038/nmeth.2089.Search in Google Scholar PubMed PubMed Central

Singh, M. K., A. Agarwal, R. Gopal, R. K. Swarnkar, and R. K. Kotnala. 2011. “Dumbbell Shaped Nickel Nanocrystals Synthesized by a Laser Induced Fragmentation Method.” Journal of Materials Chemistry 21: 11074–9, https://doi.org/10.1039/c1jm12320c.Search in Google Scholar

Świerczyńska, A., J. Bohdziewicz, G. Kaminska, and K. Wojciechowski. 2016. “Influence of the Type of Membrane-Forming Polymer on the Membrane Fouling.” Environment Protection Engineering 42 (2): 197–210, http://epe.pwr.wroc.pl/2016/2-2016/Swierczynska_2-2016.pdf.10.37190/epe160214Search in Google Scholar

Szewczyk, P. K., D. P. Ura, S. Metwally, J. Knapczyk-Korczak, M. Gajek, M. M. Marzec, A. Bernasik, and U. Stachewicz. 2019. “Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes.” Polymers 11 (1): 34, https://doi.org/10.3390/polym11010034.Search in Google Scholar PubMed PubMed Central

Tarus, B., N. Fadel, A. Al-Oufy, and M. El-Messiry. 2016. “Effect of Polymer Concentration on the Morphology and Mechanical Characteristics of Electrospun Cellulose Acetate and Poly (Vinyl Chloride) Nanofiber Mats.” Alexandria Engineering Journal 55 (3): 2975–84, https://doi.org/10.1016/j.aej.2016.04.025.Search in Google Scholar

Tian, H., Y. Wang, Y. Pei, and J.C. Crittenden. 2020. “Unique Applications and Improvements of Reverse Electrodialysis: A Review and Outlook.” Applied Energy 262: 114482, https://doi.org/10.1016/j.apenergy.2019.114482.Search in Google Scholar

Tufa, R. A. 2020. “Salinity Gradient Power Reverse Electrodialysis: Cation Exchange Membrane Design Based on Polypyrrole-Chitosan Composites for Enhanced Monovalent Selectivity.” Chemical Engineering Journal 380: 122461, https://doi.org/10.1016/j.cej.2019.122461.Search in Google Scholar

Tufa, R. A., S. Pawlowski, J. Veerman, K. Bouzek, E. Fontananova, G. Di Profio, S. Velizarov, J. G. Crespo, K. Nikmeijer, and E. Crucio. 2018. “Progress and Prospects in Reverse Electrodialysis for Salinity Gradient Energy Conversion and Storage.” Applied Energy 225: 290–331, https://doi.org/10.1016/j.apenergy.2018.04.111.Search in Google Scholar

Veerman, J., S. J. Saakes, and G. J. Harmsen. 2009. “Reverse Electrodialysis: Performance of a Stack with 50 cells on the Mixing of Sea and River Water.” Journal of Membrane Science 327 (1–2): 136–44, https://doi.org/10.1016/j.memsci.2008.11.015.Search in Google Scholar

Villafaña-López, L., D. M. Reyes-Valadez, O. A. González-Vargas, V. A. Suárez-Toriello, and J. S. Jaime-Ferrer. 2019. “Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis.” Membranes 9 (11): 145, https://doi.org/10.3390/membranes9110145.Search in Google Scholar PubMed PubMed Central

Yasukawa, M., T. Suzuki, and M. Higa. 2018. “Salinity Gradient Processes: Thermodynamics, Applications, and Future Prospects.” In Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation, edited by S. Sarp and N. Hilal, 3–56. Amsterdam: Elsevier, https://doi.org/10.1016/C2016-0-02151-4.Search in Google Scholar

Zheng, J.- Y., M.- F. Zhuang, Z.- J. Yu, G.- F. Zheng, Y. Zhao, H. Wang, and D.- H. Sun. 2014. “The Effect of Surfactants on the Diameter and Morphology of Electrospun Ultrafine Nanofiber.” Nanomaterials 689298: 9, https://doi.org/10.1155/2014/689298.Search in Google Scholar

Received: 2020-01-31
Accepted: 2020-06-22
Published Online: 2020-07-24

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2020-0020/html
Scroll to top button