Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 5, 2018

Revisiting Electrochemical Techniques to Characterize the Solid-State Diffusion Mechanism in Lithium-Ion Batteries

  • I. O. Santos-Mendoza , J. Vázquez-Arenas , I. González , G. Ramos-Sánchez and C. O. Castillo-Araiza EMAIL logo

Abstract

Lithium-ion batteries (LiBs) have gained a worldwide position as energy storage devices due to their high energy density, power density and cycle life. Nevertheless, these performance parameters are yet insufficient for current and future demands diversifying their range of applications, and competitiveness against other power sources. In line with the materials science, the optimization of LiBs, first, requires an in-depth characterization and understanding of their determining steps regarding transport phenomena and electrode kinetics occurring within these devices. Experimental and theoretical studies have identified the solid-state diffusion of Li+ into the composite cathode material as one of the transport mechanisms limiting the performance of LiBs, in particular at high charge and discharge rates (C-rates). Nowadays, there is however ambivalence to characterize this mass transport mechanism using the diffusion coefficient calculated either by electrochemical techniques or ab initio quantum chemistry methods.  This contribution revisits conventional electrochemical methodologies employed in literature to estimate mass transport diffusivity of LiBs, in particular using LiFePO4 in the cathode, and their suitability and reliability are comprehensively discussed. These experimental and theoretical methods include Galvanostatic and Potentiostatic Intermittent Titration Technique (GITT and PITT), Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV) and ab initio quantum chemistry methods. On the one hand, experimental methods seem not to isolate the diffusion mechanism in the solid phase; thus, obtaining an unreliable apparent diffusion coefficient (ranging from 10–10 to 10–16 cm2 s−1), which only serves as a criterion to discard among a set of LiBs. On the other hand, atomistic approaches based on ab initio, density functional theory (DFT), cannot yet capture the complexity of the local environments involved at this scale; in consequence, these approaches have predicted inadequate diffusion coefficients for LiFePO4 (ranging from 10–6 to 10–7 cm2 s−1) which strongly differ from experimental values. This contribution, at long last, remarks the factors influencing diffusion mechanisms and addresses the uncertainties to characterize this transport mechanism in the cathode, stressing the needs to establish methods to determine the diffusion coefficient accurately, coupling electrochemical techniques, ab initio methods, and engineering approaches based on modeling.

Abbreviations

LiBs

Lithium-ion batteries

GITT

Galvanostatic Intermittent Titration Technique

PITT

Potentiostatic Intermittent Titration Technique

EIS

Electrochemical Impedance Spectroscopy

CV

Cyclic Voltammetry

DFT

Density Functional Theory

PVDF

polyvinylidene fluoride

HFP

hexafluoropropylene

EC

Ethylene Carbonate

DEC

Diethyl Carbonate

DMC

Dimethyl Carbonate

MSD

Means Square Displacement

HOMO

Highest occupied molecular orbital

LUMO

Lowest unoccupied molecular orbital.

References

Adamo, C., and V. Barone. 1999. “Toward reliable density functional methods without adjustable parameters: The PBE0 model.” The Journal of Chemical Physics 110 (13): 6158–70.10.1063/1.478522Search in Google Scholar

Andersson A., B. Kalska, L. Häggström, and J. O. Thomas. 2000. “Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study.” Solid State Ionics 130 (1-2): 41–52.10.1016/S0167-2738(00)00311-8Search in Google Scholar

Andersson A. S., and J. O Thomas. 2001. “The source of first-cycle capacity loss in LiFePO4.” Journal of Power Sources 97-98: 498–502.10.1016/S0378-7753(01)00633-4Search in Google Scholar

Aurbach, D. 2000. “Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries.” Journal of Power Sources 89 (2): 206–18.10.1016/S0378-7753(00)00431-6Search in Google Scholar

Bang, H. J., V. S. Donepudi, and J. Prakash. 2002. “Preparation and characterization of partially substituted LiMyMn2−yO4 (M=Ni, Co, Fe) spinel cathodes for Li-ion batteries.” Electrochimica Acta 48 (4): 443–51.10.1016/S0013-4686(02)00691-6Search in Google Scholar

Boukamp, B. A., and H. J. M. Bouwmeester. 2003. “Interpretation of the gerischer impedance in solid state ionics.” Solid State Ionics 157 (1): 29–33.10.1016/S0167-2738(02)00185-6Search in Google Scholar

Boulfelfel, S. E., G. Seifert, and S. Leoni. 2011. “Atomistic investigation of Li+ diffusion pathways in the olivine LiFePO4 cathode material.” Journal of Materials Chemistry 21 (41): 16365–72.10.1039/c1jm10725aSearch in Google Scholar

Cao, Q., H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu, and H. Q. Wu. 2007. “A novel carbon-coated LiCoO2 as cathode material for lithium ion battery.” Electrochemistry Communications 9 (5): 1228–32.10.1016/j.elecom.2007.01.017Search in Google Scholar

Chang, Y. C., and H. J. Sohn. 2000. “Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons.” Journal of the Electrochemical Society 147 (1): 50–8.10.1149/1.1393156Search in Google Scholar

Chen, J., and J. Graetz. 2011. “Study of antisite defects in hydrothermally prepared LiFePO4 by in situ x-ray diffraction.” ACS Applied Materials & Interfaces 3 (5): 1380–4.10.1021/am200141aSearch in Google Scholar PubMed

Chen, Q., X. Qiao, Y. Wang, T. Zhang, C. Peng, W. Yin, and L. Liu. 2012 (3). “Electrochemical performance of Li3−xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries.” Journal of Power Sources 201: 267–73.10.1016/j.jpowsour.2011.10.133Search in Google Scholar

Chueh, W. C., F. El Gabaly, J. D. Sugar, N. C. Bartelt, A. H. McDaniel, K. R. Fenton, K. R. Zavadil, T. Tyliszczak, W. Lai, and K. F. McCarty. 2013. “Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge m.” Nano Letters 13 (3): 866–72.10.1021/nl3031899Search in Google Scholar

Chung, M. D., J. H. Seo, X. C. Zhang, and A. M. Sastry. 2011. “Implementing realistic geometry and measured diffusion coefficients into single particle electrode modeling based on experiments with single LiMn2O4 spinel particles.” Journal of The Electrochemical Society 158 (4): A371–78.10.1149/1.3549161Search in Google Scholar

Churikov, A. V., A.V. Ivanishchev, I.A. Ivanishcheva, V.O. Sycheva, N.R. Khasanova, and E.V. Antipov. 2010. “Determination of lithium diffusion coefficient in LiFePO4 electrode by Galvanostatic and Potentiostatic Intermittent Titration Techniques.” Electrochimica Acta 55 (8): 2939–50.10.1016/j.electacta.2009.12.079Search in Google Scholar

Dathar, G. K. P., Daniel Sheppard, Keith J. Stevenson, and Graeme Henkelman. 2011. “Calculations of Li-ion diffusion in olivine phosphates.” Chemistry of Materials 23 (17): 4032–37.10.1021/cm201604gSearch in Google Scholar

Dees, D. W., S. Kawauchi, D. P. Abraham, and J. Prakash. 2009. “Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode.” Journal of Power Sources 189 (1): 263–8.10.1016/j.jpowsour.2008.09.045Search in Google Scholar

Deiss, E. 2002. “Spurious potential dependence of diffusion coefficients in Li+ insertion electrodes measured with PITT.” Electrochimica Acta 47 (25): 4027–34.10.1016/S0013-4686(02)00363-8Search in Google Scholar

Deiss, E. 2005. “Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT.” Electrochimica Acta 50 (14): 2927–32.10.1016/j.electacta.2004.11.042Search in Google Scholar

Delmas, C., M. Maccario, L. Croguennec, F. Le Cras, and F. Weill. 2008. “Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model.” Nature Materials 7 (8): 665–71.10.1038/nmat2230Search in Google Scholar

Diard, J. P., B. Le Gorrec, and C. Montella. 2001. “Influence of particle size distribution on insertion processes in composite electrodes. Potential step and EIS theory: Part I. Linear diffusion.” Journal of Electroanalytical Chemistry 499 (1): 67–77.10.1016/S0022-0728(00)00479-4Search in Google Scholar

Ding, N., J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen, and I. Lieberwirth. 2009. “Determination of the diffusion coefficient of lithium ions in nano-Sii.” Solid State Ionics 180 (2-3): 222–5.10.1016/j.ssi.2008.12.015Search in Google Scholar

Dominko, R., M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, and J. Jamnik. 2003. “The role of carbon black distribution in cathodes for Li ion batteries.” Journal of Power Sources 119-121: 770–3.10.1016/S0378-7753(03)00250-7Search in Google Scholar

Doyle, M., J. Newman, A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon. 1996. “Comparison of modeling predictions with wxperimental data from plastic lithium ion cells.” Journal of The Electrochemical Society 143 (6): 1890.10.1149/1.1836921Search in Google Scholar

Ellis, B., L. K. Perry, D. H. Ryan, and L. F. Nazar. 2006. “Small polaron hopping in LixFePO4 solid solutions: coupled lithium-ion and electron mobility.” Journal of the American Chemical Society 128 (35): 11416–22.10.1021/ja0614114Search in Google Scholar PubMed

Farkhondeh, M., M. Pritzker, M. Fowler, M. Safari, and C. Delacourt. 2014. “Mesoscopic modeling of  Li insertion in phase-separating electrode materials: Application to lithium iron phosphate.” Physical Chemistry Chemical Physics 16 (41): 22555–65.10.1039/C4CP03530ESearch in Google Scholar

Farkhondeh, M., and C. Delacourt. 2011. “Mathematical modeling of commercial LiFePO4 electrodes based on variable solid-state diffusivity.” Journal of the Electrochemical Society 159 (2): A177–92.10.1149/2.073202jesSearch in Google Scholar

Fisher, C. A. J., V. M. Hart Prieto, and M. S. Islam. 2008. “Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior.” Chemistry of Materials 20 (18): 5907–15.10.1021/cm801262xSearch in Google Scholar

Gale, J. D. 1997. “GULP: A computer program for the symmetry-adapted simulation of solids.” Journal of the Chemical Society, Faraday Transactions 93 (4): 629–37.10.1039/a606455hSearch in Google Scholar

Gao, F., and Z. Tang. 2008. “Kinetic behavior of LiFePO4/C cathode material for lithium-Ion batteries.” Electrochimica Acta 53 (15): 5071–5.10.1016/j.electacta.2007.10.069Search in Google Scholar

Gupta, A., J. H. Seo, X. Zhang, W. Du, A. M. Sastry, and W. Shyy. 2011. “Effective transport properties of LiMn2O4 electrode via particle-scale modeling.” Journal of The Electrochemical Society 158 (5): A487–97.10.1149/1.3560441Search in Google Scholar

Hai, B., Alpesh K. Shukla, Hugues Duncan, and Guoying Chen. 2013. “The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials.” J. Mater. Chem. A 1 (3): 759–69.10.1039/C2TA00212DSearch in Google Scholar

Han, B. C., A. Van der Ven, D. Morgan, and G. Ceder. 2004 (10). “Electrochemical modeling of intercalation processes with phase field models.” Electrochimica Acta 49 (26): 4691–9.10.1016/j.electacta.2004.05.024Search in Google Scholar

Hjelm, A.-K., and G. Lindbergh. 2002. “Experimental and theoretical analysis of LiMn2O4 cathodes for use in rechargeable lithium batteries by electrochemical impedance spectroscopy (EIS).” Electrochimica Acta 47 (11): 1747–59.10.1016/S0013-4686(02)00008-7Search in Google Scholar

Hoang, K., and M. Johannes. 2011. “Tailoring native defects in LiFePO4: Insights from first-principles calculations.” Chemistry of Materials 23 (11): 3003–13.10.1021/cm200725jSearch in Google Scholar

Hu, B., and G. Tao. 2015. “Molecular dynamics simulations on lithium diffusion in LiFePO4: The effect of anti-site defects.” Journal of Materials Chemistry A 3 (40): 20399–407.10.1039/C5TA05062FSearch in Google Scholar

Ibrahim, H., A. Ilinca, and J. Perron. 2008. “Energy storage systems—characteristics and comparisons.” Renewable and Sustainable Energy Reviews 12 (5): 1221–50.10.1016/j.rser.2007.01.023Search in Google Scholar

Islam, M. A. 2004. “Einstein–Smoluchowski diffusion equation: A discussion.” Physica Scripta 70 (2–3): 120.10.1088/0031-8949/70/2-3/008Search in Google Scholar

Islam, M. S., D. J. Driscoll, C. A. J. Fisher, and P. R. Slater. 2005. “Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material.” Chemistry of Materials 17 (20): 5085–92.10.1021/cm050999vSearch in Google Scholar

Jang, Y.-I., B. J. Neudecker, and N. J. Dudney. 2001. “Lithium diffusion in LiCoO2 (0.45 < × < 0.7) intercalation cathodes.” Electrochemical and Solid-State Letters 4 (6): A74–7.10.1149/1.1368717Search in Google Scholar

Jin, B., E. M. Jin, K. Park, and H. Gu. 2008. “Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery.” Electrochemistry Communications 10 (10): 1537–40.10.1016/j.elecom.2008.08.001Search in Google Scholar

Kannan, A. M., L. Rabenberg, and A. Manthiram. 2003. “High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries.” Electrochemical and Solid-State Letters 6 (1): A16–8.10.1149/1.1526782Search in Google Scholar

Kim, D. K., P. Muralidharan, H. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, and Y. Cui. 2008. “Spinel LiMn2O4 nanorods as lithium ion battery cathodes.” Nano Letters 8 (11): 3948–52.10.1021/nl8024328Search in Google Scholar

Kissinger, P. T., and W. R. Heineman. 1983. “Cyclic voltammetry.” Journal of Chemical Education 60 (9): 702.10.1021/ed060p702Search in Google Scholar

Knauer, R. C., and J. G. Mullen. 1968. “Direct observation of solid-state diffusion using the M\”Ossbauer effect.” Physical Review 174 (3): 711–3.10.1103/PhysRev.174.711Search in Google Scholar

Kovacheva, D., B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, H. Kim, and Doron Aurbach. 2005. “Electrochemical Behavior of Electrodes Comprising Micro- and Nano-Sized Particles of LiNi0.5Mn1.5O4: A Comparative Study.” Electrochimica Acta 50 (28): 5553–60.10.1016/j.electacta.2005.03.055Search in Google Scholar

Kumar, A., R. Thomas, N. K. Karan, J. J. Saavedra-Arias, M. K. Singh, S. B. Majumder, M. S. Tomar, and R. S. Katiyar. 2009. “Structural and Electrochemical Characterization of Pure LiFePO4 and Nanocomposite C-LiFePO4 Cathodes for Lithium Ion Rechargeable Batteries.” Journal of Nanotechnology 2009: 1–10.10.1155/2009/176517Search in Google Scholar

Kutteh, R., and M. Avdeev. 2014. “Initial Assessment of an Empirical Potential as a Portable Tool for Rapid Investigation of Li+ Diffusion in Li+ Battery Cathode Materials.” The Journal of Physical Chemistry C 118 (21): 11203–14.10.1021/jp5004402Search in Google Scholar

Levi, M. D., K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten. 1999. “Determination of the Li Ion Chemical Diffusion Coefficient for the Topotactic Solid-State Reactions Occurring via a Two-Phase or Single-Phase Solid Solution Pathway.” Journal of Electroanalytical Chemistry 477 (1): 32–40.10.1016/S0022-0728(99)00386-1Search in Google Scholar

Levi, M. D., and D. Aurbach. 1997. “Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes.” The Journal of Physical Chemistry B 101 (23): 4641–7.10.1021/jp9701911Search in Google Scholar

Li, Q., J. Chen, L. Fan, X. Kong, and Y. Lu. 2016. “Progress in Electrolytes for Rechargeable Li-Based Batteries and Beyond.” Green Energy & Environment 1 (1): 18–42.10.1016/j.gee.2016.04.006Search in Google Scholar

Li, Y., J. N. Weker, W. E. Gent, D. N. Mueller, J. Lim, D. A. Cogswell, T. Tyliszczak, and W. C. Chueh. 2015. “Dichotomy in the Lithiation Pathway of Ellipsoidal and Platelet LiFePO4 Particles Revealed through Nanoscale Operando State-Of-Charge Imaging.” Advanced Functional Materials 25 (24): 3677–87.10.1002/adfm.201500286Search in Google Scholar

Li, Y. S, Meyer, J. Lim, S. C. Lee, W. E. Gent, S. Marchesini, H. Krishnan, T. Tyliszczak, D. Shapiro, A. L. Kilcoyne, and W. C. Chueh. 2015. “Effects of Particle Size, Electronic Connectivity, and Incoherent Nanoscale Domains on the Sequence of Lithiation in LiFePO4 Porous Electrodes.” Advanced Materials 27 (42): 6591–7.10.1002/adma.201502276Search in Google Scholar PubMed

Li, Z., F. Du, X. Bie, D. Zhang, Y. Cai, X. Cui, C. Wang, G. Chen, and Y. Wei. 2010. “Electrochemical Kinetics of the Li[Li0.23Co0.3Mn0.47]O2 Cathode Material Studied by GITT and EIS.” The Journal of Physical Chemistry C 114 (51): 22751–7.10.1021/jp1088788Search in Google Scholar

Liu, H., Q. Cao, L.J. Fu, C. Li, Y.P. Wu, and H.Q. Wu. 2006. “Doping Effects of Zinc on LiFePO4 Cathode Material for Lithium Ion Batteries.” Electrochemistry Communications 8 (10): 1553–7.10.1016/j.elecom.2006.07.014Search in Google Scholar

Liu, H., C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, and H.Q. Wu. 2006. “Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique.” Journal of Power Sources 159 (1): 717–20.10.1016/j.jpowsour.2005.10.098Search in Google Scholar

Liu, M. Z. Dong, Y. He, Y. Fu, X. Qin, X. Miao, H. Du, B. Li, Q. Yang, Z. Lin, T.S Zhao, and F. Kang. 2016. “Novel Gel Polymer Electrolyte for High-Performance Lithium–Sulfur Batteries.” Nano Energy 22: 278–89.10.1016/j.nanoen.2016.02.008Search in Google Scholar

Ma, J., C. Wang, and S. Wroblewski. 2007. “Kinetic Characteristics of Mixed Conductive Electrodes for Lithium Ion Batteries.” Journal of Power Sources 164 (2): 849–56.10.1016/j.jpowsour.2006.11.024Search in Google Scholar

Malik, R., D. Burch, M. Bazant, and G. Ceder. 2010. “Particle Size Dependence of the Ionic Diffusivity.” Nano Letters 10 (10): 4123–7.10.1021/nl1023595Search in Google Scholar PubMed

Mao, Z.-Y., Y.-P. Sun, and K. Scott. 2016. “Evaluation of Apparent Lithium-Ion Diffusion Coefficients in FePO4/LiFePO4 Cathode Material Particles from Linear Non-Equilibrium Thermodynamics and Principle of Electroneutrality.” Journal of Electroanalytical Chemistry 766: 107–19.10.1016/j.jelechem.2016.01.018Search in Google Scholar

Mastali Majdabadi, M., S. Farhad, M. Farkhondeh, R. A. Fraser, and M. Fowler. 2015. “Simplified Electrochemical Multi-Particle Model for LiFePO4 Cathodes in Lithium-Ion Batteries.” Journal of Power Sources 275: 633–43.10.1016/j.jpowsour.2014.11.066Search in Google Scholar

Mekonnen, Y., A. Sundararajan, and A. I. Sarwat. (2016).Review of Cathode and Anode Materials for Lithium-Ion BatteriesA Review of Cathode and Anode Materials for Lithium-Ion Batteries In SoutheastCon 2016.10.1109/SECON.2016.7506639Search in Google Scholar

Miao, X., H. Ni, H. Zhang, C. Wang, J. Fang, and G. Yang. 2014 (10). “Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery.” Journal of Power Sources 264: 147–54.10.1016/j.jpowsour.2014.04.068Search in Google Scholar

Montella, C. 2002. “Discussion of the Potential Step Method for the Determination of the Diffusion Coefficients of Guest Species in Host Materials: Part I. Influence of Charge Transfer Kinetics and Ohmic Potential Drop.” Journal of Electroanalytical Chemistry 518 (2): 61–83.10.1016/S0022-0728(01)00691-XSearch in Google Scholar

Montella, C. 2006. “Apparent Diffusion Coefficient of Intercalated Species Measured with PITT: A Simple Formulation.” Electrochimica Acta 51 (15): 3102–11.10.1016/j.electacta.2005.08.046Search in Google Scholar

Morgan, D., A. Van der Ven, and G. Ceder. 2004. “Li Conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) Olivine Materials.” Electrochemical and Solid-State Letters 7 (2): A30–2.10.1149/1.1633511Search in Google Scholar

Nie, M., J. Demeaux, B. T. Young, D. R. Heskett, Y. Chen, A. Bose, J. C. Woicik, and B. L. Lucht. 2015. “Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries.” Journal of The Electrochemical Society 162 (13): A7008–14.10.1149/2.0021513jesSearch in Google Scholar

Nishimura, S., G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, and A. Yamada. 2008. “Experimental Visualization of Lithium Diffusion in LixFePO4.” Nature Materials 7 (9): 707–11.10.1038/nmat2251Search in Google Scholar PubMed

Nitta, N., F. Wu, J. T. Lee, and G. Yushin. 2015. “Li-Ion Battery Materials: Present and Future.” Materials Today 18 (5): 252–64.10.1016/j.mattod.2014.10.040Search in Google Scholar

Nowak, A. P., B. Wicikowska, K. Trzciński, and A. Lisowska-Oleksiak. 2014. “Determination of Chemical Diffusion Coefficient of Lithium Ions in Ceramics Derived from Pyrolysed Poly(1,2-dimethylsilazane) and Starch.” Procedia Engineering 98: 8–13.10.1016/j.proeng.2014.12.480Search in Google Scholar

Osada, I., H. de Vries, B. Scrosati, and S, Passerini. 2015. “Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.” Angewandte Chemie International Edition 55 (2): 500–13.10.1002/anie.201504971Search in Google Scholar PubMed

Padhi, A. K., K. S. Nanjundaswamy, and J. B. Goodenough. 1997. “Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries.” Journal of the Electrochemical Society 144 (4): 1188–94.10.1149/1.1837571Search in Google Scholar

Park, Chang-Kyoo, Park, Sung-Bin, Shin, Ho-Chul, Cho, Won Il, and Jang, H. 2011. “Li Ion Diffusivity and Rate Performance of the LiFePO4 Modified by Cr Doping.” Bulletin of the Korean Chemical Society 32 (1): 191–5.10.5012/bkcs.2011.32.1.191Search in Google Scholar

Prosini, P. 2002. “Determination of the Chemical Diffusion Coefficient of Lithium in LiFePO4.” Solid State Ionics 148 (1-2): 45–51.10.1016/S0167-2738(02)00134-0Search in Google Scholar

Prosini, P. P. 2005. “Modeling the Voltage Profile for LiFePO4.” Journal of the Electrochemical Society 152 (10): A1925–A1929.10.1007/978-0-85729-745-7_10Search in Google Scholar

Qiao, Y. Q., X.L. Wang, J.Y. Xiang, D. Zhang, W.L. Liu, and J.P. Tu. 2011 (2). “Electrochemical Performance of Li3V2(PO4)3/C Cathode Materials Using Stearic Acid as a Carbon Source.” Electrochimica Acta 56 (5): 2269–75.10.1016/j.electacta.2010.11.073Search in Google Scholar

Rho, Y. H., and K. Kanamura. 2004. “Li+ Ion Diffusion in Li4Ti5O12 Thin Film Electrode Prepared by PVP Sol–Gel Method.” Journal of Solid State Chemistry 177 (6): 2094–100.10.1016/j.jssc.2004.02.018Search in Google Scholar

Rui, X. H., N. Ding, J. Liu, C. Li, and C.H. Chen. 2010. “Analysis of the Chemical Diffusion Coefficient of Lithium Ions in Li3V2(PO4)3 Cathode Material.” Electrochimica Acta 55 (7): 2384–90.10.1016/j.electacta.2009.11.096Search in Google Scholar

Santhanagopalan, S., Q. Guo, P. Ramadass, and Ralph E. White. 2006. “Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries.” Journal of Power Sources 156 (2): 620–8.10.1016/j.jpowsour.2005.05.070Search in Google Scholar

Scrosati, B., and J. Garche. 2010. “Lithium Batteries: Status, Prospects and Future.” Journal of Power Sources 195 (9): 2419–30.10.1016/j.jpowsour.2009.11.048Search in Google Scholar

Shaju, K. M., G. V. Subba Rao, and B. V. R. Chowdari. 2003a. “Li Ion Kinetic Studies on Spinel Cathodes, Li(M1/6Mn11/6)O4 (M = Mn, Co, CoAl) by GITT and EIS.” Journal of Materials Chemistry 13 (1): 106–13.10.1039/b207407aSearch in Google Scholar

Shaju, K. M., G. V. Subba Rao, and B. V. R. Chowdari. 2003b. “EIS and GITT Studies on Oxide Cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (X=0 and 1/3).” Electrochimica Acta 48 (18): 2691–703.10.1016/S0013-4686(03)00317-7Search in Google Scholar

Shenouda, A. Y., and H. K. Liu. 2009. “Studies on Electrochemical Behaviour of Zinc-Doped LiFePO4 for Lithium Battery Positive Electrode.” Journal of Alloys and Compounds 477 (1): 498–503.10.1016/j.jallcom.2008.10.077Search in Google Scholar

Shin, H. C., W. I. Cho, and H. Jang. 2006. “Electrochemical Properties of the Carbon-Coated LiFePO4 as a Cathode Material for Lithium-Ion Secondary Batteries.” Journal of Power Sources 159 (2): 1383–88.10.1016/j.jpowsour.2005.12.043Search in Google Scholar

Srinivasan, V., and J. Newman. 2004. “Discharge Model for the Lithium Iron-Phosphate Electrode.” Journal of the Electrochemical Society 151 (10): A1517–29.10.1149/1.1785012Search in Google Scholar

Subramanian, V., H. Zhu, and B. Wei. 2006. “High Rate Reversibility Anode Materials of Lithium Batteries from Vapor-Grown Carbon Nanofibers.” The Journal of Physical Chemistry B 110 (14): 7178–83.10.1021/jp057080jSearch in Google Scholar PubMed

Tang, K., X. Yu, J. Sun, H. Li, and X. Huang. 2011. “Kinetic Analysis on LiFePO4 Thin Films by CV, GITT, and EIS.” Electrochimica Acta 56 (13): 4869–75.10.1016/j.electacta.2011.02.119Search in Google Scholar

Tang, S. B., M. O. Lai, and L. Lu. 2008. “Study on Li+-Ion Diffusion in Nano-Crystalline LiMn2O4 Thin Film Cathode Grown by Pulsed Laser Deposition Using CV, EIS and PITT Techniques.” Materials Chemistry and Physics 111 (1): 149–53.10.1016/j.matchemphys.2008.03.041Search in Google Scholar

Tang, X., C. Pan, L. He, L. Li, and Z. Chen. 2004. “A Novel Technique Based on the Ratio of Potentio-Charge Capacity to Galvano-Charge Capacity (RPG) for Determination of the Diffusion Coefficient of Intercalary Species within Insertion-Host Materials: Theories and Experiments.” Electrochimica Acta 49 (19): 3113–9.10.1016/j.electacta.2004.02.025Search in Google Scholar

Tang, X., L. Li, Q. Lai, X. Song, and L. Jiang. 2009. “Investigation on Diffusion Behavior of Li+ in LiFePO4 by Capacity Intermittent Titration Technique (CITT).” Electrochimica Acta 54 (8): 2329–34.10.1016/j.electacta.2008.10.065Search in Google Scholar

Tarascon, J. M., and M. Armand. 2001. “Issues and Challenges Facing Rechargeable Lithium Batteries.” Nature 414 (6861): 359–67.10.1038/35104644Search in Google Scholar PubMed

Tealdi, C., C. Ferrara, L. Malavasi, P. Mustarelli, C. Ritter, A. Spinella, D. Massiot, and P. Florian. 2012. “Average versus Local Structure in K2NiF4-type LaSrAlO4: Direct Experimental Evidence of Local Cationic Ordering.” Journal of Materials Chemistry 22 (21): 10488.10.1039/c2jm30603dSearch in Google Scholar

Vogl, G., and B. Sepiol. 1994. “Elementary Diffusion Jump of Iron Atoms in Intermetallic Phases Studied by Mössbauer spectroscopy—I. Fe Al Close to Equiatomic Stoichiometry.” Acta Metallurgica Et Materialia 42 (9): 3175–81.10.1016/0956-7151(94)90416-2Search in Google Scholar

Wang, C., U. S. Kasavajjula, and P. E. Arce. 2007. “A Discharge Model for Phase Transformation Electrodes: Formulation, Experimental Validation, and Analysis.” The Journal of Physical Chemistry C 111 (44): 16656–63.10.1021/jp074490uSearch in Google Scholar

Wen, C. J., B.A. Boukamp, R.A. Huggins, and W. Weppener. 1979. “Thermodynamic and Mass Transport Properties of “LiAl”.” Journal of The Electrochemical Society 126 (12): 2258.10.1149/1.2128939Search in Google Scholar

Weppner, W., and R. A. Huggins. 1977. “Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb.” Journal of the Electrochemical Society 124 (10): 1569–78.10.1149/1.2133112Search in Google Scholar

West, W. C., J. Soler, M. C. Smart, B. V. Ratnakumar, S. Firdosy, V. Ravi, M. S. Anderson, J. Hrbacek, E. S. Lee, and A. Manthiram. 2011. “Electrochemical Behavior of Layered Solid Solution Li2MnO3−LiMO2 (M = Ni, Mn, Co) Li-Ion Cathodes with and without Alumina Coatings.” Journal of The Electrochemical Society 158 (8): A883–9.10.1149/1.3597319Search in Google Scholar

Wunde, F., F. Berkemeier, and G. Schmitz. 2012. “Lithium Diffusion in Sputter-Deposited Li4Ti5O12 Thin Films.” Journal of Power Sources 215: 109–15.10.1016/j.jpowsour.2012.04.102Search in Google Scholar

Xia, H., L. Lu, and G. Ceder. 2006. “Li Diffusion in LiCoO2 Thin Films Prepared by Pulsed Laser Deposition.” Journal of Power Sources 159 (2): 1422–7.10.1016/j.jpowsour.2005.12.012Search in Google Scholar

Xia, H., Z. Luo, and J. Xie. 2012. “Nanostructured LiMn2O4 and Their Composites as High-Performance Cathodes for Lithium-Ion Batteries.” Progress in Natural Science: Materials International 22 (6): 572–84.10.1016/j.pnsc.2012.11.014Search in Google Scholar

Xia, L., L. Yu, D. Hu, and G. Z. Chen. 2017. “Electrolytes for Electrochemical Energy Storage.” Materials Chemistry Frontiers 1 (4): 584–618.10.1039/C6QM00169FSearch in Google Scholar

Xiao, L., Y. Guo, D. Qu, B. Deng, H. Liu, and D. Tang. 2013. “Influence of Particle Sizes and Morphologies on the Electrochemical Performances of Spinel LiMn2O4 Cathode Materials.” Journal of Power Sources 225: 286–92.10.1016/j.jpowsour.2012.10.070Search in Google Scholar

Xu, K. 2004. “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries.” Chemical Reviews 104 (10): 4303–418.10.1021/cr030203gSearch in Google Scholar

Xu, K. 2014. “Electrolytes and Interphases in Li-Ion Batteries and Beyond.” Chemical Reviews 114 (23): 11503–618.10.1021/cr500003wSearch in Google Scholar

Yang, S., Y. Song, P. Y. Zavalij, and M. S. Whittingham. 2002. “Reactivity, Stability and Electrochemical Behavior of Lithium Iron Phosphates.” Electrochemistry Communications 4 (3): 239–44.10.1016/S1388-2481(01)00298-3Search in Google Scholar

Yang, S., X. Wang, X. Yang, Y. Bai, Z. Liu, H. Shu, and Q. Wei. 2012. “Determination of the Chemical Diffusion Coefficient of Lithium Ions in Spherical Li[Ni0.5Mn0.3CO0.2]O2.” Electrochimica Acta 66: 88–93.10.1016/j.electacta.2012.01.061Search in Google Scholar

Yu, D. Y. W., C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, and S. Fujitani. 2007. “Study of LiFePO4 by Cyclic Voltammetry.” Journal of The Electrochemical Society 154 (4): A253–7.10.1149/1.2434687Search in Google Scholar

Zhang, J., C. Ma, J. Liu, L. Chen, A. Pan, and W. Wei. 2016. “Solid Polymer Electrolyte Membranes Based on Organic/Inorganic Nanocomposites with Star-Shaped Structure for High Performance Lithium Ion Battery.” Journal of Membrane Science 509: 138–48.10.1016/j.memsci.2016.02.049Search in Google Scholar

Zhang, J.-j., P. He, and Y.-y Xia. 2008. “Electrochemical Kinetics Study of Li-Ion in Cu6Sn5 Electrode of Lithium Batteries by PITT and EIS.” Journal of Electroanalytical Chemistry 624 (1): 161–6.10.1016/j.jelechem.2008.09.003Search in Google Scholar

Zhang, S. M., J.X. Zhang, S.J. Xu, X.J. Yuan, and B.C. He. 2013. “Li Ion Diffusivity and Electrochemical Properties of FePO4 Nanoparticles Acted Directly as Cathode Materials in Lithium Ion Rechargeable Batteries.” Electrochimica Acta 88: 287–93.10.1016/j.electacta.2012.10.029Search in Google Scholar

Zhang, S. S., K. Xu, and T. R. Jow. 2006. “EIS Study on the Formation of Solid Electrolyte Interface in Li-Ion Battery.” Electrochimica Acta 51 (8): 1636–40.10.1016/j.electacta.2005.02.137Search in Google Scholar

Received: 2018-04-08
Revised: 2018-07-10
Accepted: 2018-07-30
Published Online: 2018-10-05

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2018-0095/html
Scroll to top button