Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 3, 2014

Modelling of the Membrane Permeability Effect on the H2 Production Using CFD Method

  • Yacine Benguerba EMAIL logo , Christine Dumas and Barbara Ernst

Abstract

Autothermal reforming of CH4 in a membrane catalytic microreactor for the production of hydrogen at different temperatures over supported Ni catalysts has been studied. A three-dimensional mathematical model was developed using a computational fluid dynamics (CFD) technique. The effect of using different membranes on the performance of the micro-reactor was analysed. The amounts of hydrogen produced and separated in each case, under the same operating conditions, were compared. It was proven that using the porous membrane (Ni–Al2O3) could be an economic solution for the production and separation of hydrogen in membrane reactors.

References

1. LinYS, KumakiriI, NairBN, AlsyouriH. Microporous inorganic membranes. Sep Purif Methods2002;31:229379.10.1081/SPM-120017009Search in Google Scholar

2. LiuPK, SahimiM, TsotsisTT. Process intensification in hydrogen production via membrane-based reactive separations. Curr Opin Chem Eng2012;1:34251.10.1016/j.coche.2012.06.001Search in Google Scholar

3. WangH, DongX, LinYS. Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation. J Membr Sci2014;450:42532.10.1016/j.memsci.2013.08.030Search in Google Scholar

4. BasileA, CriscuoliA, SantellaF, DrioliE. Membrane reactor for water gas shift reaction. Gas Sep Purif1996;10:24354.10.1016/S0950-4214(96)00024-2Search in Google Scholar

5. TostiS, BasileA, ChiappettaG, RizzelloC. Pd–Ag membrane reactors for water gas shift reaction. Chem Eng J2003;93:2330.10.1016/S1385-8947(02)00113-4Search in Google Scholar

6. AugustineAS, MaYH, KazantzisNK. High pressure palladium membrane reactor for the high temperature water–gas shift reaction. Int J Hydrogen Energy2011;36:535060.10.1016/j.ijhydene.2011.01.172Search in Google Scholar

7. BiY, XuH, LiW, GoldbachV. Water–gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst. Int J Hydrogen Energy2009;34:296571.10.1016/j.ijhydene.2009.01.046Search in Google Scholar

8. FlanaganTB, OatesWA. Some thermodynamic aspects of metal hydrogen systems. J Alloys Compounds2005;404–406:1623.10.1016/j.jallcom.2004.11.108Search in Google Scholar

9. AgarwalA, PujariM, UppalurinR, VermaA. Preparation optimization and characterization of low cost ceramics for the fabrication of dense nickel composite membranes. Ceramics Int2013;39:770916.10.1016/j.ceramint.2013.03.024Search in Google Scholar

10. BulasaraVK, ThakuriaH, UppaluriR, PurkaitMK. Effect of process parameters on electroless plating and nickel-ceramic composite membrane characteristics. Desalination2011;268:195203.10.1016/j.desal.2010.10.025Search in Google Scholar

11. ErnstB, HaagS, BurgardM. Permselectivity of a nickel/ceramic composite membrane at elevated temperatures: a new prospect in hydrogen separation?J Membr Sci2007;288:20817.10.1016/j.memsci.2006.11.017Search in Google Scholar

12. HaagS, BurgardM, ErnstB. Pure nickel coating on amesoporous alumina membrane: preparation by electroless plating and characterization. Surf Coat Technol2006;201:216673.10.1016/j.surfcoat.2006.03.023Search in Google Scholar

13. LeeDY, KimYB. Hydrogen permeation properties of [Ni60-Nb40]95-Pd5 amorphous metallic membrane. Trans Kor Hydrogen New Energy Soc (Kor)2008;19:35966.Search in Google Scholar

14. PizziD, WorthR, BaschettiMG, SartiGC, NodaKI.Hydrogen permeability of 2.5 mm palladium-silver membranes deposited on ceramic supports. J Membr Sci2008;325:44653.10.1016/j.memsci.2008.08.020Search in Google Scholar

15. SadrzadehM, AmirilarganiM, ShahidiK, MohammadiT. Gas permeation through a synthesized composite PDMS/PES membrane. J Membr Sci2009;342:23650.10.1016/j.memsci.2009.06.047Search in Google Scholar

16. WengTH, TsengHH, ZhuangGL, WeyMY. Development of CMS/Al2O3-supported PPO composite membrane for hydrogen separation. Int J Hydrogen Energy2013;38:3092104.10.1016/j.ijhydene.2012.12.108Search in Google Scholar

17. YuCY, SeaBK, LeeDW, ParkSJ, LeeKY, LeeKH. Effect of nickel deposition on hydrogen permeation behavior of mesoporous γ-alumina composite membranes. J Colloid Interface Sci2008;319:4706.10.1016/j.jcis.2007.11.056Search in Google Scholar

18. XuanJ, LeungMK, LeungDY, NiM. Integrating chemical kinetics with CFD modeling for autothermal reforming of biogas. Int J Hydrogen Energy2009;34:907686.10.1016/j.ijhydene.2009.09.002Search in Google Scholar

19. AyabeS, OmotoH, UtakaT, KikuchiR, SasakiK, TeraokaY, et al. Catalytic autothermal reforming of methane and propane over supported metal catalysts. Appl Catalysis A Gen2003;241:2619.10.1016/S0926-860X(02)00471-4Search in Google Scholar

20. TrimmDL, LamCW. The combustion of methane on platinum-alumina fibre catalysts-I. J Chem Eng Sci1980;35:140513.10.1016/0009-2509(80)85134-7Search in Google Scholar

21. MaL, TrimmDL, JiangC. The design and testing of an autothermal reactor for the conversion of light hydrocarbons to hydrogen. 1. The kinetics of the catalytic oxidation of light hydrocarbons. Appl Catalysis A Gen1996;138:27583.10.1016/0926-860X(95)00301-0Search in Google Scholar

22. XuJ, FromentGF. Methane steam reforming, methanation and water-gas shift: I- intrinsic kinetics. AIChE J1989;35:8896.10.1002/aic.690350109Search in Google Scholar

23. XiuG, LiP, RodriguesA. Sorption enhanced reaction process with reactive regeneration. Chem Eng Sci2002;57:3893908.10.1016/S0009-2509(02)00245-2Search in Google Scholar

24. AvetisovAK, Rostrup-NielsenJR, KuchaevVL, Bak HansenbJ-H, ZyskinAG, ShapatinaEN. Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst. J Mol Catalysis A Chem2010;315:15562.10.1016/j.molcata.2009.06.013Search in Google Scholar

25. AmerJ. Développement de membranes métalliques de nickel déposées sur supports céramiques par electroless plating. Etude des propriétés particulières de permsélectivité à l’hydrogène à hautes températures. Doctorat thesis, University of Strasbourg, France, 2008.Search in Google Scholar

26. IulianelliA, ManzoliniG, De FalcoM, CompanariS, LongoT, LiguoriS, et al. H2 production by low pressure methane steam reforming in a Pd-Ag membrane reactor over a Ni-based catalyst: experimental and modelling. Int J Hydrogen Energy2010;35:1151424.10.1016/j.ijhydene.2010.06.049Search in Google Scholar

Published Online: 2014-4-3
Published in Print: 2014-1-1

©2014 by De Gruyter

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2013-0063/html
Scroll to top button