Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 1, 2020

The structure of the TOM core complex in the mitochondrial outer membrane

  • Thomas Bausewein , Hammad Naveed , Jie Liang and Stephan Nussberger ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

In the past three decades, significant advances have been made in providing the biochemical background of TOM (translocase of the outer mitochondrial membrane)-mediated protein translocation into mitochondria. In the light of recent cryoelectron microscopy-derived structures of TOM isolated from Neurospora crassa and Saccharomyces cerevisiae, the interpretation of biochemical and biophysical studies of TOM-mediated protein transport into mitochondria now rests on a solid basis. In this review, we compare the subnanometer structure of N. crassa TOM core complex with that of yeast. Both structures reveal remarkably well-conserved symmetrical dimers of 10 membrane protein subunits. The structural data also validate predictions of weakly stable regions in the transmembrane β-barrel domains of the protein-conducting subunit Tom40, which signal the existence of β-strands located in interfaces of protein-protein interactions.

Acknowledgements

This article is dedicated to Walter Neupert who had been the director of the TOM project at Munich University and had always inspired those working with him by his ideas and passionate attitude. The authors of this review thank the colleagues who contributed to the research and shared their experience in the journey toward the elucidation of the TOM structure with them, in particular Werner Kühlbrandt (Max-Planck-Institute of Biophysics, Frankfurt). S.N. also wants to thank Robin Gosh (University of Stuttgart) for many helpful discussions. This work was supported by the Max Planck Society (T.B.) and the University of Stuttgart (S.N.).

References

Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T., and Kohda, D. (2000). Structural basis of presequence recognition by the mitochondrial protein import Receptor Tom20. Cell 100, 551–560.10.1016/S0092-8674(00)80691-1Search in Google Scholar

Adamian, L., Naveed, H., and Liang, J. (2011). Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. Biochim. Biophys. Acta Biomembr. 1808, 1092–1102.10.1016/j.bbamem.2010.12.008Search in Google Scholar PubMed PubMed Central

Ahting, U., Thun, C., Hegerl, R., Typke, D., Nargang, F.E., Neupert, W., and Nussberger, S. (1999). The TOM core complex. J. Cell Biol. 147, 959–968.10.1083/jcb.147.5.959Search in Google Scholar PubMed PubMed Central

Ahting, U., Thieffry, M., Engelhardt, H., Hegerl, R., Neupert, W., and Nussberger, S. (2001). Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J. Cell Biol. 153, 1151–1160.10.1083/jcb.153.6.1151Search in Google Scholar PubMed PubMed Central

Alconada, A., Kübrich, M., Moczko, M., Hönlinger, A., and Pfanner, N. (1995). The mitochondrial receptor complex: the small subunit Mom8b/Isp6 supports association of receptors with the general insertion pore and transfer of preproteins. Mol. Cell. Biol. 15, 6196–6205.10.1128/MCB.15.11.6196Search in Google Scholar PubMed PubMed Central

Allen, R., Egan, B., Gabriel, K., Beilharz, T., and Lithgow, T. (2002). A conserved proline residue is present in the transmembrane-spanning domain of Tom7 and other tail-anchored protein subunits of the TOM translocase. FEBS Lett. 514, 347–350.10.1016/S0014-5793(02)02433-XSearch in Google Scholar

Araiso, Y., Tsutsumi, A., Qiu, J., Imai, K., Shiota, T., Song, J., Lindau, C., Wenz, L.-S., Sakaue, H., Yunoki, K., et al. (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature 575, 395–401.10.1038/s41586-019-1680-7Search in Google Scholar PubMed

Backes, S. and Herrmann, J.M. (2017). Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front. Mol. Biosci. 4, 83.10.3389/fmolb.2017.00083Search in Google Scholar PubMed PubMed Central

Backes, S., Hess, S., Boos, F., Woellhaf, M.W., Gödel, S., Jung, M., Mühlhaus, T., and Herrmann, J.M. (2018). Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217, 1369–1382.10.1083/jcb.201708044Search in Google Scholar PubMed PubMed Central

Baker, K.P., Schaniel, A., Vestweber, D., and Schatz, G. (1990). A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348, 605–609.10.1038/348605a0Search in Google Scholar PubMed

Barrera, N.P. and Robinson, C.V. (2011). Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu. Rev. Biochem. 80, 247–271.10.1146/annurev-biochem-062309-093307Search in Google Scholar PubMed

Bausewein, T., Mills, D.J., Langer, J.D., Nitschke, B., Nussberger, S., and Kühlbrandt, W. (2017). Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell 170, 693–700.10.1016/j.cell.2017.07.012Search in Google Scholar PubMed

Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., and Zeth, K. (2008). Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. U.S.A. 105, 15370–15375.10.1073/pnas.0808115105Search in Google Scholar PubMed PubMed Central

Becker, T., Pfannschmidt, S., Guiard, B., Stojanovski, D., Milenkovic, D., Kutik, S., Pfanner, N., Meisinger, C., and Wiedemann, N. (2008). Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors. J. Biol. Chem. 283, 120–127.10.1074/jbc.M706997200Search in Google Scholar PubMed

Becker, T., Bhushan, S., Jarasch, A., Armache, J.-P., Funes, S., Jossinet, F., Gumbart, J., Mielke, T., Berninghausen, O., Schulten, K., et al. (2009). Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373.10.1126/science.1178535Search in Google Scholar PubMed PubMed Central

Becker, T., Guiard, B., Thornton, N., Zufall, N., Stroud, D.A., Wiedemann, N., and Pfanner, N. (2010). Assembly of the mitochondrial protein import channel. Mol. Biol. Cell 21, 3106–3113.10.1091/mbc.e10-06-0518Search in Google Scholar

Becker, T., Wenz, L.S., Krüger, V., Lehmann, W., Müller, J.M., Goroncy, L., Zufall, N., Lithgow, T., Guiard, B., Chacinska, A., et al. (2011). The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. J. Cell Biol. 194, 387–395.10.1083/jcb.201102044Search in Google Scholar PubMed PubMed Central

Bolliger, L., Junne, T., Schatz, G., and Lithgow, T. (1995). Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J. 14, 6318–6326.10.1002/j.1460-2075.1995.tb00322.xSearch in Google Scholar PubMed PubMed Central

Brix, J., Dietmeier, K., and Pfanner, N. (1997). Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730–20735.10.1074/jbc.272.33.20730Search in Google Scholar PubMed

Burri, L., Williams, B.A.P., Bursac, D., Lithgow, T., and Keeling, P.J. (2006). Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc. Natl. Acad. Sci. U.S.A. 103, 15916–15920.10.1073/pnas.0604109103Search in Google Scholar PubMed PubMed Central

Chacinska, A. (2003). Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in formation of a TOM–TIM–preprotein supercomplex. EMBO J. 22, 5370–5381.10.1093/emboj/cdg532Search in Google Scholar PubMed PubMed Central

Chacinska, A., van der Laan, M., Mehnert, C.S., Guiard, B., Mick, D.U., Hutu, D.P., Truscott, K.N., Wiedemann, N., Meisinger, C., Pfanner, N., et al. (2010). Distinct forms of mitochondrial TOM–TIM supercomplexes define signal-dependent states of preprotein sorting. Mol. Cell. Biol. 30, 307–318.10.1128/MCB.00749-09Search in Google Scholar PubMed PubMed Central

Chew, O., Lister, R., Qbadou, S., Heazlewood, J.L., Soll, J., Schleiff, E., Millar, A.H., and Whelan, J. (2004). A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett. 557, 109–114.10.1016/S0014-5793(03)01457-1Search in Google Scholar

Court, D.A., Nargang, F.E., Steiner, H., Hodges, R.S., Neupert, W., and Lill, R. (1996). Role of the intermembrane-space domain of the preprotein receptor Tom22 in protein import into mitochondria. Mol. Cell. Biol. 16, 4035–4042.10.1128/MCB.16.8.4035Search in Google Scholar PubMed PubMed Central

Dekker, P.J.T., Ryan, M.T., Brix, J., Müller, H., Hönlinger, A., and Pfanner, N. (1998). Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol. Cell. Biol. 18, 6515–6524.10.1128/MCB.18.11.6515Search in Google Scholar PubMed PubMed Central

Dembowski, M., Künkele, K.P., Nargang, F.E., Neupert, W., and Rapaport, D. (2001). Assembly of Tom6 and Tom7 into the TOM core complex of Neurospora crassa. J. Biol. Chem. 276, 17679–17685.10.1074/jbc.M009653200Search in Google Scholar PubMed

Dietmeier, K., Hönlinger, A., Bömer, U., Dekker, P.J., Eckerskorn, C., Lottspeich, F., Kübrich, M., and Pfanner, N. (1997). Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388, 195–200.10.1038/40663Search in Google Scholar PubMed

Dimmer, K.S., Papić, D., Schumann, B., Sperl, D., Krumpe, K., Walther, D.M., and Rapaport, D. (2012). A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins. J. Cell Sci. 125, 3464–3473.10.1242/jcs.103804Search in Google Scholar PubMed

Dolezal, P., Likic, V., Tachezy, J., and Lithgow, T. (2006). Evolution of the molecular machines for protein import into mitochondria. Science 313, 314–318.10.1126/science.1127895Search in Google Scholar PubMed

Dukanovic, J. and Rapaport, D. (2011). Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochim. Biophys. Acta Biomembr. 1808, 971–980.10.1016/j.bbamem.2010.06.021Search in Google Scholar PubMed

Dyson, H.J. and Wright, P.E. (2005). Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208.10.1038/nrm1589Search in Google Scholar PubMed

Egan, B., Beilharz, T., George, R., Isenmann, S., Gratzer, S., Wattenberg, B., and Lithgow, T. (1999). Targeting of tail-anchored proteins to yeast mitochondria in vivo. FEBS Lett. 451, 243–248.10.1016/S0014-5793(99)00581-5Search in Google Scholar

Ellenrieder, L., Mårtensson, C.U., and Becker, T. (2015). Biogenesis of mitochondrial outer membrane proteins, problems and diseases. Biol. Chem. 396, 1199–1213.10.1515/hsz-2015-0170Search in Google Scholar PubMed

Endo, T. and Yamano, K. (2010). Transport of proteins across or into the mitochondrial outer membrane. Biochim. Biophys. Acta Mol. Cell Res. 1803, 706–714.10.1016/j.bbamcr.2009.11.007Search in Google Scholar PubMed

Esaki, M., Kanamori, T., Nishikawa, S., Shin, I., Schultz, P.G., and Endo, T. (2003). Tom40 protein import channel binds to non-native proteins and prevents their aggregation. Nat. Struct. Mol. Biol. 10, 988–994.10.1038/nsb1008Search in Google Scholar PubMed

Estrada Mallarino, L., Fan, E., Odermatt, M., Müller, M., Lin, M., Liang, J., Heinzelmann, M., Fritsche, F., Apell, H.-J., and Welte, W. (2015). TtOmp85, a β-barrel assembly protein, functions by barrel augmentation. Biochemistry 54, 844–852.10.1021/bi5011305Search in Google Scholar PubMed PubMed Central

Gessmann, D., Flinner, N., Pfannstiel, J., Schlösinger, A., Schleiff, E., Nussberger, S., and Mirus, O. (2011a). Structural elements of the mitochondrial preprotein-conducting channel Tom40 dissolved by bioinformatics and mass spectrometry. Biochim. Biophys. Acta Bioenerg. 1807, 1647–1657.10.1016/j.bbabio.2011.08.006Search in Google Scholar PubMed

Gessmann, D., Mager, F., Naveed, H., Arnold, T., Weirich, S., Linke, D., Liang, J., and Nussberger, S. (2011b). Improving the resistance of a eukaryotic β-barrel protein to thermal and chemical perturbations. J. Mol. Biol. 413, 150–161.10.1016/j.jmb.2011.07.054Search in Google Scholar PubMed PubMed Central

Geula, S., Naveed, H., Liang, J., and Shoshan-Barmatz, V. (2012). Structure-based analysis of VDAC1 protein. J. Biol. Chem. 287, 2179–2190.10.1074/jbc.M111.268920Search in Google Scholar PubMed PubMed Central

Grevel, A., Pfanner, N., and Becker, T. (2020). Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biol. Chem. 401, 117–129.10.1515/hsz-2019-0310Search in Google Scholar PubMed

Gumbart, J., Trabuco, L.G., Schreiner, E., Villa, E., and Schulten, K. (2009). Regulation of the protein-conducting channel by a bound ribosome. Structure 17, 1453–1464.10.1016/j.str.2009.09.010Search in Google Scholar PubMed PubMed Central

Gumbart, J., Chipot, C., and Schulten, K. (2011). Free-energy cost for translocon-assisted insertion of membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 108, 3596–3601.10.1073/pnas.1012758108Search in Google Scholar PubMed PubMed Central

Gumbart, J., Ivan, T., Roux, B., and Schulten, K. (2013). Reconciling the roles of kinetic and thermodynamic factors in membrane–protein insertion. J. Am. Chem. Soc. 135: 2291–2297.10.1021/ja310777kSearch in Google Scholar PubMed PubMed Central

Harbauer, A.B., Opalińska, M., Gerbeth, C., Herman, J.S., Rao, S., Schönfisch, B., Guiard, B., Schmidt, O., Pfanner, N., and Meisinger, C. (2014). Cell cycle–dependent regulation of mitochondrial preprotein translocase. Science 346, 1109–1113.10.1126/science.1261253Search in Google Scholar PubMed

Heinz, E. and Lithgow, T. (2013). Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. Biochim. Biophys. Acta Mol. Cell Res. 1833, 295–303.10.1016/j.bbamcr.2012.02.006Search in Google Scholar PubMed

Hill, K., Model, K., Ryan, M.T., Dietmeier, K., Martin, F., Wagner, R., and Pfanner, N. (1998). Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521.10.1038/26780Search in Google Scholar PubMed

Hiller, S., Garces, R.G., Malia, T.J., Orekhov, V.Y., Colombini, M., and Wagner, G. (2008). Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321, 1206–1210.10.1126/science.1161302Search in Google Scholar PubMed PubMed Central

Hönlinger, A., Bömer, U., Alconada, A., Eckerskorn, C., Lottspeich, F., Dietmeier, K., and Pfanner, N. (1996). Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J. 15, 2125–2137.10.1002/j.1460-2075.1996.tb00566.xSearch in Google Scholar

Koehler, C.M. (2004). New developments in mitochondrial assembly. Annu. Rev. Cell Dev. Biol. 20, 309–335.10.1146/annurev.cellbio.20.010403.105057Search in Google Scholar PubMed

Koh, J.Y., Hajek, P., and Bedwell, D.M. (2001). Overproduction of PDR3 suppresses mitochondrial import defects associated with a TOM70 null mutation by increasing the expression of TOM72 in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 7576–7586.10.1128/MCB.21.22.7576-7586.2001Search in Google Scholar PubMed PubMed Central

Künkele, K.P., Heins, S., Dembowski, M., Nargang, F.E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998). The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019.10.1016/S0092-8674(00)81206-4Search in Google Scholar

Kutik, S., Guiard, B., Meyer, H.E., Wiedemann, N., and Pfanner, N. (2007). Cooperation of translocase complexes in mitochondrial protein import. J. Cell Biol. 179, 585–591.10.1083/jcb.200708199Search in Google Scholar PubMed PubMed Central

Lackey, S.W.K., Taylor, R.D., Go, N.E., Wong, A., Sherman, E.L., and Nargang, F.E. (2014). Evidence supporting the 19 β-strand model for Tom40 from cysteine scanning and protease site accessibility studies. J. Biol. Chem. 289, 21640–21650.10.1074/jbc.M114.578765Search in Google Scholar PubMed PubMed Central

Lister, R. and Whelan, J. (2006). Mitochondrial protein import: convergent solutions for receptor structure. Curr. Biol. 16, R197–R199.10.1016/j.cub.2006.02.024Search in Google Scholar PubMed

Lister, R., Carrie, C., Duncan, O., Ho, L.H.M., Howell, K.A., Murcha, M.W., and Whelan, J. (2007). Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell 19, 3739–3759.10.1105/tpc.107.050534Search in Google Scholar PubMed PubMed Central

Macasev, D., Whelan, J., Newbigin, E., Silva-Filho, M.C., Mulhern, T.D., and Lithgow, T. (2004). Tom22′, an 8-kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. Mol. Biol. Evol. 21, 1557–1564.10.1093/molbev/msh166Search in Google Scholar PubMed

Mager, F., Sokolova, L., Lintzel, J., Brutschy, B., and Nussberger, S. (2010). LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM. J. Phys. Condens. Matter 22, 454132.10.1088/0953-8984/22/45/454132Search in Google Scholar PubMed

Mahendran, K.R., Romero-Ruiz, M., Schlösinger, A., Winterhalter, M., and Nussberger, S. (2012). Protein translocation through tom40: kinetics of peptide release. Biophys. J. 102, 39–47.10.1016/j.bpj.2011.11.4003Search in Google Scholar PubMed PubMed Central

Mahendran, K.R., Lamichhane, U., Romero-Ruiz, M., Nussberger, S., and Winterhalter, M. (2013). Polypeptide translocation through the mitochondrial TOM channel: temperature-dependent rates at the single-molecule level. J. Phys. Chem. Lett. 4, 78–82.10.1021/jz301790hSearch in Google Scholar PubMed

Matouschek, A., Pfanner, N., and Voos, W. (2000). Protein unfolding by mitochondria. EMBO Rep. 1, 404–410.10.1093/embo-reports/kvd093Search in Google Scholar PubMed PubMed Central

Melin, J., Schulz, C., Wrobel, L., Bernhard, O., Chacinska, A., Jahn, O., Schmidt, B., and Rehling, P. (2014). Presequence recognition by the Tom40 channel contributes to precursor translocation into the mitochondrial matrix. Mol. Cell. Biol. 34, 3473–3485.10.1128/MCB.00433-14Search in Google Scholar PubMed PubMed Central

Melin, J., Kilisch, M., Neumann, P., Lytovchenko, O., Gomkale, R., Schendzielorz, A., Schmidt, B., Liepold, T., Ficner, R., Jahn, O., et al. (2015). A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria. Biochim. Biophys. Acta 1853, 1850–1859.10.1016/j.bbamcr.2015.04.021Search in Google Scholar PubMed

Moczko, M., Bömer, U., Kübrich, M., Zufall, N., Hönlinger, A., and Pfanner, N. (1997). The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol. Cell. Biol. 17, 6574–6584.10.1128/MCB.17.11.6574Search in Google Scholar PubMed PubMed Central

Model, K., Prinz, T., Ruiz, T., Radermacher, M., Krimmer, T., Kühlbrandt, W., Pfanner, N., and Meisinger, C. (2002). Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J. Mol. Biol. 316, 657–666.10.1006/jmbi.2001.5365Search in Google Scholar PubMed

Model, K., Meisinger, C., and Kühlbrandt, W. (2008). Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J. Mol. Biol. 383, 1049–1057.10.1016/j.jmb.2008.07.087Search in Google Scholar PubMed

Mokranjac, D. and Neupert, W. (2009). Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. Biochim. Biophys. Acta Mol. Cell Res. 1793, 33–41.10.1016/j.bbamcr.2008.06.021Search in Google Scholar PubMed

Nanda, V., Hsieh, D., and Davis, A. (2013). Prediction and design of outer membrane protein–protein interactions. In: Membrane Proteins. Methods in Molecular Biology (Methods and Protocols), G. Ghirlanda and A. Senes, eds. (Totowa, NJ: Humana Press), 1063, 183–196.10.1007/978-1-62703-583-5_10Search in Google Scholar PubMed

Naveed, H. and Liang, J. (2012). TMBB-Explorer: a webserver to predict the structure, oligomerization state, ppi interface, and thermodynamic properties of the transmembrane domains of outer membrane proteins. Biophys. J. 102, 469a.10.1016/j.bpj.2011.11.2573Search in Google Scholar

Naveed, H. and Liang, J. (2014). Weakly stable regions and protein–protein interactions in beta-barrel membrane proteins. Curr. Pharm. Des. 20, 1268–1273.10.2174/13816128113199990071Search in Google Scholar PubMed PubMed Central

Naveed, H., Jackups, R., and Liang, J. (2009). Predicting weakly stable regions, oligomerization state, and protein–protein interfaces in transmembrane domains of outer membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 106, 12735–12740.10.1073/pnas.0902169106Search in Google Scholar PubMed PubMed Central

Naveed, H., Xu, Y., Jackups, R., and Liang, J. (2012a). Predicting three-dimensional structures of transmembrane domains of β-barrel membrane proteins. J. Am. Chem. Soc. 134, 1775–1781.10.1021/ja209895mSearch in Google Scholar PubMed PubMed Central

Naveed, H., Jimenez-Morales, D., Tian, J., Pasupuleti, V., Kenney, L.J., and Liang, J. (2012b). Engineered oligomerization state of OmpF protein through computational design decouples oligomer dissociation from unfolding. J. Mol. Biol. 419, 89–101.10.1016/j.jmb.2012.02.043Search in Google Scholar PubMed PubMed Central

Neupert, W. and Herrmann, J.M. (2007). Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749.10.1146/annurev.biochem.76.052705.163409Search in Google Scholar PubMed

Parvin, N., Carrie, C., Pabst, I., Läßer, A., Laha, D., Paul, M.V., Geigenberger, P., Heermann, R., Jung, K., Vothknecht, U.C., et al. (2017). TOM9.2 is a calmodulin-binding protein critical for TOM complex assembly but not for mitochondrial protein import in Arabidopsis thaliana. Mol. Plant 10, 575–589.10.1016/j.molp.2016.12.012Search in Google Scholar PubMed

Perry, A.J., Rimmer, K.A., Mertens, H.D.T., Waller, R.F., Mulhern, T.D., Lithgow, T., and Gooley, P.R. (2008). Structure, topology and function of the translocase of the outer membrane of mitochondria. Plant Physiol. Biochem. 46: 265–274.10.1016/j.plaphy.2007.12.012Search in Google Scholar PubMed

Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20: 267–284.10.1038/s41580-018-0092-0Search in Google Scholar PubMed PubMed Central

Poynor, M., Eckert, R., and Nussberger, S. (2008). Dynamics of the preprotein translocation channel of the outer membrane of mitochondria. Biophys. J. 95: 1511–1522.10.1529/biophysj.108.131003Search in Google Scholar PubMed PubMed Central

Qiu, J., Wenz, L.-S.S., Zerbes, R.M., Oeljeklaus, S., Bohnert, M., Stroud, D.A., Wirth, C., Ellenrieder, L., Thornton, N., Kutik, S., et al. (2013). Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154, 596–608.10.1016/j.cell.2013.06.033Search in Google Scholar PubMed

Ramage, L., Junne, T., Hahne, K., Lithgow, T., and Schatz, G. (1993). Functional cooperation of mitochondrial protein import receptors in yeast. EMBO J. 12, 4115–4123.10.1002/j.1460-2075.1993.tb06095.xSearch in Google Scholar PubMed PubMed Central

Rao, S., Schmidt, O., Harbauer, A.B., Schönfisch, B., Guiard, B., Pfanner, N., and Meisinger, C. (2012). Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell 23, 1618–1627.10.1091/mbc.e11-11-0933Search in Google Scholar

Rapaport, D. and Neupert, W. (1999). Biogenesis of Tom40, core component of the tom complex of mitochondria. J. Cell Biol. 146, 321–332.10.1083/jcb.146.2.321Search in Google Scholar PubMed PubMed Central

Rapaport, D., Neupert, W., and Lill, R. (1997). Mitochondrial protein import. J. Biol. Chem. 272, 18725–18731.10.1074/jbc.272.30.18725Search in Google Scholar PubMed

Rapaport, D., Künkele, K.-P., Dembowski, M., Ahting, U., Nargang, F.E., Neupert, W., and Lill, R. (1998). Dynamics of the TOM complex of mitochondria during binding and translocation of preproteins. Mol. Cell. Biol. 18, 5256–5262.10.1128/MCB.18.9.5256Search in Google Scholar PubMed PubMed Central

Rehling, P., Model, K., Brandner, K., Kovermann, P., Sickmann, A., Meyer, H.E., Kühlbrandt, W., Wagner, R., Truscott, K.N., and Pfanner, N. (2003). Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747–1751.10.1126/science.1080945Search in Google Scholar PubMed

Rehling, P., Brandner, K., and Pfanner, N. (2004). Mitochondrial import and the twin-pore translocase. Nat. Rev. Mol. Cell Biol. 5, 519–530.10.1038/nrm1426Search in Google Scholar PubMed

Rimmer, K.A., Foo, J.H., Ng, A., Petrie, E.J., Shilling, P.J., Perry, A.J., Mertens, H.D.T., Lithgow, T., Mulhern, T.D., and Gooley, P.R. (2011). Recognition of mitochondrial targeting sequences by the import receptors Tom20 and Tom22. J. Mol. Biol. 405: 804–818.10.1016/j.jmb.2010.11.017Search in Google Scholar PubMed

Romero-Ruiz, M., Mahendran, K.R., Eckert, R., Winterhalter, M., and Nussberger, S. (2010). Interactions of mitochondrial presequence peptides with the mitochondrial outer membrane preprotein translocase TOM. Biophys. J. 99, 774–781.10.1016/j.bpj.2010.05.010Search in Google Scholar PubMed PubMed Central

Schlossmann, J., Lill, R., Neupert, W., and Court, D.A. (1996). Tom71, a novel homologue of the mitochondrial preprotein receptor Tom70. J. Biol. Chem. 271, 17890–17895.10.1074/jbc.271.30.17890Search in Google Scholar PubMed

Schmitt, S., Ahting, U., Eichacker, L., Granvogl, B., Go, N.E., Nargang, F.E., Neupert, W., and Nussberger, S. (2005). Role of Tom5 in maintaining the structural stability of the TOM complex of mitochondria. J. Biol. Chem. 280, 14499–14506.10.1074/jbc.M413667200Search in Google Scholar PubMed

Sherman, E.L., Go, N.E., and Nargang, F.E. (2005). Functions of the small proteins in the TOM complex of Neurospora crasssa. Mol. Biol. Cell 16, 4172–4182.10.1091/mbc.e05-03-0187Search in Google Scholar PubMed PubMed Central

Shiota, T., Mabuchi, H., Tanaka-Yamano, S., Yamano, K., and Endo, T. (2011). In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proc. Natl. Acad. Sci. U.S.A. 108, 15179–15183.10.1073/pnas.1105921108Search in Google Scholar PubMed PubMed Central

Shiota, T., Imai, K., Qiu, J., Hewitt, V.L., Tan, K., Shen, H., Sakiyama, N., Fukasawa, Y., Hayat, S., Kamiya, M., et al. (2015). Molecular architecture of the active mitochondrial protein gate. Science 349, 1544–1548.10.1126/science.aac6428Search in Google Scholar PubMed

Tian, W., Lin, M., Tang, K., Liang, J., and Naveed, H. (2018). High-resolution structure prediction of β-barrel membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 115, 1511–1516.10.1073/pnas.1716817115Search in Google Scholar PubMed PubMed Central

Tucker, K. and Park, E. (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 26:1158–1166.10.1038/s41594-019-0339-2Search in Google Scholar PubMed PubMed Central

Ujwal, R., Cascio, D., Colletier, J.-P., Faham, S., Zhang, J., Toro, L., Ping, P., and Abramson, J. (2008). The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc. Natl. Acad. Sci. U.S.A. 105, 17742–17747.10.1073/pnas.0809634105Search in Google Scholar PubMed PubMed Central

Waegemann, K., Popov-Čeleketić, D., Neupert, W., Azem, A., and Mokranjac, D. (2015). Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria. J. Mol. Biol. 427, 1075–1084.10.1016/j.jmb.2014.07.015Search in Google Scholar PubMed

Waller, R.F., Jabbour, C., Chan, N.C., Celik, N., Likić, V.A., Mulhern, T.D., and Lithgow, T. (2009). Evidence of a reduced and modified mitochondrial protein import apparatus in microsporidian mitosomes. Eukaryot. Cell 8, 19–26.10.1128/EC.00313-08Search in Google Scholar PubMed PubMed Central

Wenz, L.S., Ellenrieder, L., Qiu, J., Bohnert, M., Zufall, N., van der Laan, M., Pfanner, N., Wiedemann, N., and Becker, T. (2015). Sam37 is crucial for formation of the mitochondrial TOM–SAM supercomplex, thereby promoting β-barrel biogenesis. J. Cell Biol. 210, 1047–1054.10.1083/jcb.201504119Search in Google Scholar PubMed PubMed Central

Wiedemann, N. and Pfanner, N. (2017). Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714.10.1146/annurev-biochem-060815-014352Search in Google Scholar PubMed

Van Wilpe, S., Ryan, M.T., Hill, K., Maarse, A.C., Meisinger, C., Brix, J., Dekker, P.J., Moczko, M., Wagner, R., Meijer, M., et al. (1999). Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401, 485–489.10.1038/46802Search in Google Scholar PubMed

Yamamoto, H., Fukui, K., Takahashi, H., Kitamura, S., Shiota, T., Terao, K., Uchida, M., Esaki, M., Nishikawa, S., Yoshihisa, T., et al. (2009). Roles of Tom70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284, 31635–31646.10.1074/jbc.M109.041756Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0104).


Received: 2020-01-05
Accepted: 2020-03-03
Published Online: 2020-04-01
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2020-0104/html
Scroll to top button