Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 19, 2019

Circular RNA hsa_circ_0001178 facilitates the invasion and metastasis of colorectal cancer through upregulating ZEB1 via sponging multiple miRNAs

  • Chunfeng Ren EMAIL logo , Zhenmin Zhang , Shunhua Wang , Weitao Zhu , Peiguo Zheng and Wanhai Wang
From the journal Biological Chemistry

Abstract

Metastasis is the main cause of increasing cancer morbidity and mortality. However, the underlying mechanism of cancer metastasis remains largely unknown. In the present study, we identified one circular RNA (circRNA) closely related to the metastasis of colorectal cancer (CRC), namely hsa_circ_0001178. CRC patients with high hsa_circ_0001178 were more prone to have metastatic clinical features, advanced TNM stage and adverse prognosis. Stable knockdown of hsa_circ_0001178 significantly weakened CRC cell migratory and invasive capabilities in vitro as well as lung and liver metastases in vivo. Mechanistic study revealed that hsa_circ_0001178 acted as a competing endogenous RNA (ceRNA) for miR-382/587/616 to upregulate ZEB1 (a key trigger of epithelial-to-mesenchymal transition), thereby promoting CRC metastatic dissemination. Of note, ZEB1 could also increase hsa_circ_0001178 expression via physically binding to hsa_circ_0001178 promoter region. Collectively, our data uncover the crucial role of hsa_circ_0001178 in CRC metastasis, and targeted therapy based on this positive feedback ceRNA axis may be a promising treatment for metastatic CRC patients.

Acknowledgments

This work was funded by the Key Project of Medical Science and Technology of Henan Province (No. 201503008).

  1. Conflict of interest statement: The authors declare no conflicts of interest.

References

Arnaiz, E., Sole, C., Manterola, L., Iparraguirre, L., Otaegui, D., and Lawrie, C.H. (2018). CircRNAs and cancer: biomarkers and master regulators. Semin. Cancer Biol. 58, 90–99.10.1016/j.semcancer.2018.12.002Search in Google Scholar PubMed

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424.10.3322/caac.21492Search in Google Scholar PubMed

Caramel, J., Ligier, M., and Puisieux, A. (2018). Pleiotropic roles for ZEB1 in cancer. Cancer Res. 78, 30–35.10.1158/0008-5472.CAN-17-2476Search in Google Scholar PubMed

Chen, H.T., Liu, H., Mao, M.J., Tan, Y., Mo, X.Q., Meng, X.J., Cao, M.T., Zhong, C.Y., Liu, Y., and Shan, H. (2019). Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol. Cancer 18, 101.10.1186/s12943-019-1030-2Search in Google Scholar PubMed PubMed Central

Haggar, F.A. and Boushey, R.P. (2009). Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. 22, 191–197.10.1055/s-0029-1242458Search in Google Scholar PubMed PubMed Central

Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., and Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–8.10.1038/nature11993Search in Google Scholar PubMed

Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J., Marzluff, W.F., and Sharpless, N.E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157.10.1261/rna.035667.112Search in Google Scholar PubMed PubMed Central

Kristensen, L.S., Hansen, T.B., Veno, M.T., and Kjems, J. (2018). Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565.10.1038/onc.2017.361Search in Google Scholar PubMed PubMed Central

Li, Y., Zheng, F., Xiao, X., Xie, F., Tao, D., Huang, C., Liu, D., Wang, M., Wang, L., and Zeng, F. (2017). CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 18, 1646–1659.10.15252/embr.201643581Search in Google Scholar PubMed PubMed Central

Li, H.M., Ma, X.L., and Li, H.G. (2019). Intriguing circles: conflicts and controversies in circular RNA research. Wiley Interdiscip Rev RNA 10, e1538.10.1002/wrna.1538Search in Google Scholar PubMed

Liu, K.S., Pan, F., Mao, X.D., Liu, C., and Chen, Y.J. (2019). Biological functions of circular RNAs and their roles in occurrence of reproduction and gynecological diseases. Am. J. Transl. Res. 11, 1–15.Search in Google Scholar

Lu, Q., Liu, T., Feng, H., Yang, R., Zhao, X., Chen, W., Jiang, B., Qin, H., Guo, X., and Liu, M. (2019). Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol. Cancer 18, 111.10.1186/s12943-019-1040-0Search in Google Scholar PubMed PubMed Central

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S.D., Gregersen, L.H., and Munschauer, M. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338.10.1038/nature11928Search in Google Scholar PubMed

Pearson, G.W. (2019). Control of Invasion by epithelial-to-mesenchymal transition programs during metastasis. J. Clin. Med. 8, 646.10.3390/jcm8050646Search in Google Scholar PubMed PubMed Central

Reinhold, W.C., Reimers, M.A., Lorenzi, P., Ho, J., Shankavaram, U.T., Ziegler, M.S., Bussey, K.J., Nishizuka, S., Ikediobi, O., and Pommier, Y.G. (2010). Multifactorial regulation of E-cadherin expression: an integrative study. Mol. Cancer Ther. 9, 1–16.10.1158/1535-7163.MCT-09-0321Search in Google Scholar PubMed PubMed Central

Tay, Y., Rinn, J., and Pandolfi, P.P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344–352.10.1038/nature12986Search in Google Scholar PubMed PubMed Central

van Staalduinen, J., Baker, D., Ten, D.P., and van Dam, H. (2018). Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 37, 6195–6211.10.1038/s41388-018-0378-xSearch in Google Scholar PubMed

Vandewalle, C., Van Roy, F., and Berx, G. (2009). The role of the ZEB family of transcription factors in development and disease. Cell. Mol. Life Sci. 66, 773–787.10.1007/s00018-008-8465-8Search in Google Scholar PubMed

Wei, Y., Chen, X., Liang, C., Ling, Y., Yang, X., Ye, X., Zhang, H., Yang, P., Cui, X., and Ren, Y. (2019). A noncoding regulatory RNAs network driven by circ-CDYL acts specifically in the early stages hepatocellular carcinoma. Hepatology. [Epub ahead of print].10.1002/hep.30795Search in Google Scholar PubMed

Wilusz, J.E. (2018). A 360 degrees view of circular RNAs: From biogenesis to functions. Wiley Interdiscip. Rev. RNA 9, e1478.10.1002/wrna.1478Search in Google Scholar PubMed PubMed Central

Wu, S., Li, H., Lu, C., Zhang, F., Wang, H., Lu, X., and Zhang, G. (2018). Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis. Biol. Chem. 399, 1457–1467.10.1515/hsz-2018-0303Search in Google Scholar PubMed

Xu, H., Wang, C., Song, H., Xu, Y., and Ji, G. (2019). RNA-Seq profiling of circular RNAs in human colorectal cancer liver metastasis and the potential biomarkers. Mol Cancer 18, 8.10.1186/s12943-018-0932-8Search in Google Scholar PubMed PubMed Central

Yang, Z., Xie, L., Han, L., Qu, X., Yang, Y., Zhang, Y., He, Z., Wang, Y., and Li, J. (2017). Circular RNAs: regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics 7, 3106–3117.10.7150/thno.19016Search in Google Scholar PubMed PubMed Central

Yang, Z., Qu, C.B., Zhang, Y., Zhang, W.F., Wang, D.D., Gao, C.C., Ma, L., Chen, J.S., Liu, K.L., and Zheng, B. (2019). Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene 38, 2516–2532.10.1038/s41388-018-0602-8Search in Google Scholar PubMed PubMed Central

Zeng, K., Chen, X., Xu, M., Liu, X., Hu, X., Xu, T., Sun, H., Pan, Y., He, B., and Wang, S. (2018a). CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 9, 417.10.1038/s41419-018-0454-8Search in Google Scholar PubMed PubMed Central

Zeng, K., He, B., Yang, B.B., Xu, T., Chen, X., Xu, M., Liu, X., Sun, H., Pan, Y., and Wang, S. (2018b). The pro-metastasis effect of circANKS1B in breast cancer. Mol. Cancer 17, 160.10.1186/s12943-018-0914-xSearch in Google Scholar PubMed PubMed Central

Zhang, N., Li, G., Li, X., Xu, L., and Chen, M. (2018a). Circ5379-6, a circular form of tumor suppressor PPARα, participates in the inhibition of hepatocellular carcinoma tumorigenesis and metastasis. Am. J. Transl. Res. 10, 3493–3503.Search in Google Scholar

Zhang, Z., Yang, T., and Xiao, J. (2018b). Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34, 267–274.10.1016/j.ebiom.2018.07.036Search in Google Scholar PubMed PubMed Central

Zhang, Y., Xu, L., Li, A., and Han, X. (2019). The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed. Pharmacother. 110, 400–408.10.1016/j.biopha.2018.11.112Search in Google Scholar PubMed

Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., Luo, Y., Lyu, D., Li, Y., and Shi, G. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215.10.1038/ncomms11215Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2019-0350).


Received: 2019-08-20
Accepted: 2019-11-01
Published Online: 2019-11-19
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0350/html
Scroll to top button