Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 8, 2019

Regulation and related mechanism of GSN mRNA level by hnRNPK in lung adenocarcinoma cells

  • Xiao-hui Liu , Jie Ma , Jun-xia Feng , Yuan Feng , Yun-fang Zhang EMAIL logo and Lang-xia Liu EMAIL logo
From the journal Biological Chemistry

Abstract

Gelsolin (GSN) is an actin filament-capping protein that plays a key role in cell migration. Here we show that heterogeneous nuclear ribonucleoprotein K (hnRNPK) regulates GSN expression level by binding to the 3′-untranslated region (3′UTR) of GSN mRNA in non-small cell lung cancers (NSCLC) H1299 cells which are highly metastatic and express high level of GSN. We found that hnRNPK overexpression increased the mRNA and protein level of GSN, whereas hnRNPK knockdown by siRNA decreased the mRNA and protein level of GSN in both H1299 and A549 cells, indicating a positive role of hnRNPK in the regulation of GSN expression. Furthermore, hnRNPK knockdown affected the migration ability of H1299 and A549 cells which could be rescued by ectopic expression of GSN in those cells. Conversely, GSN knockdown in hnRNPK-overexpressing cells could abort the stimulatory effect of hnRNPK on the cell migration. These results suggest that hnRNPK function in the regulation of cell migration is GSN-dependent. Taken together, these data unveiled a new mechanism of regulation of the GSN expression by hnRNPK and provides new clues for the discovery of new anti-metastatic therapy.

Award Identifier / Grant number: S2013030013315, 2016A030313083, and 2018A030313544

Award Identifier / Grant number: 201607010175, 201707010263, and 201804010066

Funding statement: The authors would like to thank members of the Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes for providing discussion and support throughout the present study. The present study was supported by grants from the Guangdong Natural Science Foundation, Guangdong, China (Funder Id: 10.13039/501100003453, grant nos.: S2013030013315, 2016A030313083, and 2018A030313544) and the Science and Technology Program of Guangzhou, Guangdong, China (grant nos.: 201607010175, 201707010263, and 201804010066).

References

Arcaro, A. (1998). The small GTP-binding protein rac promotes the dissociation of gelsolin from actin filaments in neutrophils. J. Biol. Chem. 273, 805–813.10.1074/jbc.273.2.805Search in Google Scholar

Azuma, T., Witke, W., Stossel, T.P., Hartwig, J.H., and Kwiatkowski, D.J. (1998). Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J. 17, 1362–1370.10.1093/emboj/17.5.1362Search in Google Scholar

Barboro, P., Repaci, E., Rubagotti, A., Salvi, S., Boccardo, S., Spina, B., Truini, M., Introini, C., Puppo, P., and Ferrari, N. (2009). Heterogeneous nuclear ribonucleoprotein K: altered pattern of expression associated with diagnosis and prognosis of prostate cancer. Br. J. Cancer 100, 1608–1616.10.1038/sj.bjc.6605057Search in Google Scholar

Carpenter, B., Mckay, M., Dundas, S.R., Lawrie, L.C., Telfer, C., and Murray, G.I. (2006). Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer. Br. J. Cancer 95, 921–927.10.1038/sj.bjc.6603349Search in Google Scholar

Cervero, P., Himmel, M., Kruger, M., and Linder, S. (2012). Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres. Eur. J. Cell Biol. 91, 908–922.10.1016/j.ejcb.2012.05.005Search in Google Scholar

Chellaiah, M.A., Kizer, N., Silva, M., Alvarez, U., Kwiatkowski, D.J., and Hruska, K.A. (2000). Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J. Cell Biol. 148, 665–678.10.1083/jcb.148.4.665Search in Google Scholar

Chen, L., Hsueh, C., Tsang, N., Liang, Y., Chang, K., Hao, S., Yu, J., and Chang, Y. (2008). Heterogeneous ribonucleoprotein K and thymidine phosphorylase are independent prognostic and therapeutic markers for nasopharyngeal carcinoma. Clin. Cancer Res. 14, 3807–3813.10.1158/1078-0432.CCR-08-0155Search in Google Scholar

Cunningham, C.C., Stossel, T.P., and Kwiatkowski, D.J. (1991). Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 251, 1233–1236.10.1126/science.1848726Search in Google Scholar

De Corte, V., Gettemans, J., and Vandekerckhove, J. (1997). Phosphatidylinositol 4,5-bisphosphate specifically stimulates PP60c-src catalyzed phosphorylation of gelsolin and related actin-binding proteins. FEBS Lett. 401, 191–196.10.1016/S0014-5793(96)01471-8Search in Google Scholar

Desantis, C., Lin, C.C., Mariotto, A.B., Siegel, R.L., Stein, K.D., Kramer, J.L., Alteri, R., Robbins, A.S., and Jemal, A. (2012). Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin. 66, 252–271.10.3322/caac.21235Search in Google Scholar PubMed

Dosakaakita, H., Hommura, F., Fujita, H., Kinoshita, I., Nishi, M., Morikawa, T., Katoh, H., Kawakami, Y., and Kuzumaki, N. (1998). Frequent loss of gelsolin expression in non-small cell lung cancers of heavy smokers. Cancer Res. 58, 322–327.Search in Google Scholar

Fan, X., Xiong, H., Wei, J., Gao, X., Feng, Y., Liu, X., Zhang, G., He, Q., Xu, J., and Liu, L. (2016). Cytoplasmic hnRNPK interacts with GSK3β and is essential for the osteoclast differentiation. Sci. Rep. 5, 17732–17732.10.1038/srep17732Search in Google Scholar

Gao, R., Yu, Y., Inoue, A., Widodo, N., Kaul, S.C., and Wadhwa, R. (2013). Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) promotes tumor metastasis by induction of genes involved in extracellular matrix, cell movement, and angiogenesis. J. Biol. Chem. 288, 15046–15056.10.1074/jbc.M113.466136Search in Google Scholar

Gao, X., Feng, J., He, Y., Xu, F., Fan, X., Huang, W., Xiong, H., Liu, Q., Liu, W., and Liu, X. (2016). hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci. Rep. 6, 22999.10.1038/srep22999Search in Google Scholar

Habeck, M. (1999). Gelsolin: a new marker for breast cancer? Mol. Med. Today 5, 503.10.1016/S1357-4310(99)01607-XSearch in Google Scholar

Habelhah, H., Shah, K., Huang, L., Ostarecklederer, A., Burlingame, A.L., Shokat, K.M., Hentze, M.W., and Ronai, Z. (2001). ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat. Cell Biol. 3, 325–330.10.1038/35060131Search in Google Scholar

Han, N., Li, W., and Zhang, M. (2013). The function of the RNA-binding protein hnRNP in cancer metastasis. J. Cancer Res. Ther. 9, 129.10.4103/0973-1482.122506Search in Google Scholar

Huang, B., Deng, S., Loo, S.Y., Datta, A., Yap, Y.L., Yan, B., Ooi, C.H., Dinh, T.D., Zhuo, J., Tochhawng, L., et al. (2016). Gelsolin-mediated activation of PI3K/Akt pathway is crucial for hepatocyte growth factor-induced cell scattering in gastric carcinoma. Oncotarget 7, 25391–25407.10.18632/oncotarget.8603Search in Google Scholar

Klimektomczak, K., Wyrwicz, L.S., Jain, S., Bomsztyk, K., and Ostrowski, J. (2004). Characterization of hnRNP K protein-RNA interactions. J. Mol. Biol. 342, 1131–1141.10.1016/j.jmb.2004.07.099Search in Google Scholar

Kwiatkowski, D.J. (1999). Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr. Opin. Cell Biol. 11, 103–108.10.1016/S0955-0674(99)80012-XSearch in Google Scholar

Li, G.H., Arora, P.D., Chen, Y., McCulloch, C.A., and Liu, P. (2012). Multifunctional roles of gelsolin in health and diseases. Med. Res. Rev. 32, 999–1025.10.1002/med.20231Search in Google Scholar PubMed

Li, L.P., Lu, C., Chen, Z.P., Ge, F., Wang, T., Wang, W., Xiao, C., Yin, X.F., Liu, L., and He, J.X. (2011). Subcellular proteomics revealed the epithelial-mesenchymal transition phenotype in lung cancer. Proteomics 11, 429–439.10.1002/pmic.200900819Search in Google Scholar PubMed

Liepelt, A., Mossanen, J.C., Denecke, B., Heymann, F., De Santis, R., Tacke, F., Marx, G., Ostareck, D.H., and Ostarecklederer, A. (2014). Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation. RNA 20, 899–911.10.1261/rna.042788.113Search in Google Scholar PubMed PubMed Central

Linder, S., Higgs, H.N., Hufner, K., Schwarz, K., Pannicke, U., and Aepfelbacher, M. (2000). The polarization defect of Wiskott-Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J. Immunol. 165, 221–225.10.4049/jimmunol.165.1.221Search in Google Scholar PubMed

Matoulkova, E., Michalova, E., Vojtesek, B., and Hrstka, R. (2012). The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 9, 563–576.10.4161/rna.20231Search in Google Scholar PubMed

Matta, A., Tripathi, S.C., Desouza, L.V., Grigull, J.o., Kaur, J., Chauhan, S.S., Srivastava, A., Thakar, A., Shukla, N.K., and Duggal, R. (2009). Heterogeneous ribonucleoprotein K is a marker of oral leukoplakia and correlates with poor prognosis of squamous cell carcinoma. Int. J. Cancer 125, 1398–1406.10.1002/ijc.24517Search in Google Scholar PubMed

Mukhopadhyay, N.K., Kim, J., Cinar, B., Hager, M.H., Vizio, D.D., Adam, R.M., Rubin, M.A., Raychaudhuri, P., De Benedetti, A., and Freeman, M.R. (2009). Heterogeneous nuclear ribonucleoprotein K is a novel regulator of androgen receptor translation. Cancer Res. 69, 2210–2218.10.1158/0008-5472.CAN-08-2308Search in Google Scholar PubMed PubMed Central

Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108.10.3322/canjclin.55.2.74Search in Google Scholar PubMed

Paziewska, A., Wyrwicz, L.S., Bujnicki, J.M., Bomsztyk, K., and Ostrowski, J. (2004). Cooperative binding of the hnRNP K three KH domains to mRNA targets. FEBS Lett. 577, 134–140.10.1016/j.febslet.2004.08.086Search in Google Scholar PubMed

Sataranatarajan, K., Lee, M.J., Mariappan, M.M., and Feliers, D. (2008). PKCδ regulates the stimulation of vascular endothelial factor mRNA translation by angiotensin II through hnRNP K. Cell. Signal. 20, 969–977.10.1016/j.cellsig.2008.01.016Search in Google Scholar PubMed PubMed Central

Shanmugam, N., Reddy, M.A., and Natarajan, R. (2008). Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. J. Biol. Chem. 283, 36221–36233.10.1074/jbc.M806322200Search in Google Scholar PubMed PubMed Central

Shieh, D., Godleski, J.J., Herndon, J.E., Azuma, T., Mercer, H., Sugarbaker, D.J., and Kwiatkowski, D.J. (1999). Cell motility as a prognostic factor in Stage I nonsmall cell lung carcinoma: the role of gelsolin expression. Cancer 85, 47–57.10.1002/(SICI)1097-0142(19990101)85:1<47::AID-CNCR7>3.0.CO;2-LSearch in Google Scholar

Tanaka, M., Mullauer, L., Ogiso, Y., Fujita, H., Moriya, S., Furuuchi, K., Harabayashi, T., Shinohara, N., Koyanagi, T., and Kuzumaki, N. (1995). Gelsolin: a candidate for suppressor of human bladder cancer. Cancer Res. 55, 3228–3232.Search in Google Scholar

Tanaka, H., Shirkoohi, R., Nakagawa, K., Qiao, H., Fujita, H., Okada, F., Hamada, J., Kuzumaki, S., Takimoto, M., and Kuzumaki, N. (2006). siRNA gelsolin knockdown induces epithelial-mesenchymal transition with a cadherin switch in human mammary epithelial cells. Int. J. Cancer 118, 1680–1691.10.1002/ijc.21559Search in Google Scholar

Taniuchi, K., Furihata, M., Naganuma, S., Dabanaka, K., Hanazaki, K., and Saibara, T. (2016). Podocalyxin-like protein, linked to poor prognosis of pancreatic cancers, promotes cell invasion by binding to gelsolin. Cancer Sci. 107, 1430–1442.10.1111/cas.13018Search in Google Scholar

Thisted, T., Lyakhov, D.L., and Liebhaber, S.A. (2001). Optimized RNA targets of two closely related triple KH domain proteins, heterogeneous nuclear ribonucleoprotein K and αCP-2KL, suggest distinct modes of RNA recognition. J. Biol. Chem. 276, 17484–17496.10.1074/jbc.M010594200Search in Google Scholar

Wang, H., Chen, C., Yang, C., Tsai, I., Hou, Y., Chen, C., and Shan, Y.S. (2017). Tumor-associated macrophages promote epigenetic silencing of gelsolin through DNA methyltransferase 1 in gastric cancer cells. Cancer Immunol. Res. 5, 885–897.10.1158/2326-6066.CIR-16-0295Search in Google Scholar

Yang, J., Tan, D., Asch, H.L., Swede, H., Bepler, G., Geradts, J., and Moysich, K.B. (2004). Prognostic significance of gelsolin expression level and variability in non-small cell lung cancer. Lung Cancer 46, 29–42.10.1016/j.lungcan.2004.03.022Search in Google Scholar

Yang, J., Ramnath, N., Moysich, K.B., Asch, H.L., Swede, H., Alrawi, S., Huberman, J.A., Geradts, J., Brooks, J.J., and Tan, D. (2006). Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer. BMC Cancer 6, 203–203.10.1186/1471-2407-6-203Search in Google Scholar

Zhang, J., Liu, X., Lin, Y., Li, Y., Pan, J., Zong, S., Li, Y., and Zhou, Y. (2016). HnRNP K contributes to drug resistance in acute myeloid leukemia through the regulation of autophagy. Exp. Hematol. 44, 850–856.10.1016/j.exphem.2016.04.014Search in Google Scholar

Zhao, P., Dai, M., Chen, W., and Li, N. (2010). Cancer Trends in China. Jpn. J. Clin. Oncol. 40, 281–285.10.1093/jjco/hyp187Search in Google Scholar

Zhou, C. (2014). Lung cancer molecular epidemiology in China: recent trends. Transl. Lung Cancer Res. 3, 270–279.Search in Google Scholar

Received: 2018-10-31
Accepted: 2019-02-11
Published Online: 2019-03-08
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2018-0417/html
Scroll to top button