Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 22, 2018

An engineered lipocalin that tightly complexes the plant poison colchicine for use as antidote and in bioanalytical applications

  • Mikhail Barkovskiy , Elena Ilyukhina , Martin Dauner , Andreas Eichinger and Arne Skerra EMAIL logo
From the journal Biological Chemistry

Abstract

Colchicine is a toxic alkaloid prevalent in autumn crocus (Colchicum autumnale) that binds to tubulin and inhibits polymerization of microtubules. Using combinatorial and rational protein design, we have developed an artificial binding protein based on the human lipocalin 2 that binds colchicine with a dissociation constant of 120 pm, i.e. 10000-fold stronger than tubulin. Crystallographic analysis of the engineered lipocalin, dubbed Colchicalin, revealed major structural changes in the flexible loop region that forms the ligand pocket at the open end of the eight-stranded β-barrel, resulting in a lid-like structure over the deeply buried colchicine. A cis-peptide bond between residues Phe71 and Pro72 in loop #2 constitutes a peculiar feature and allows intimate contact with the tricyclic ligand. Using directed evolution, we achieved an extraordinary dissociation half-life of more than 9 h for the Colchicalin-colchicine complex. Together with the chemical robustness of colchicine and availability of activated derivatives, this also opens applications as a general-purpose affinity reagent, including facile quantification of colchicine in biological samples. Given that engineered lipocalins, also known as Anticalin® proteins, represent a class of clinically validated biopharmaceuticals, Colchicalin may offer a therapeutic antidote to scavenge colchicine and reverse its poisoning effect in situations of acute intoxication.

Acknowledgments

The authors wish to thank Prof. Dr. Florian Eyer for inspiring discussions and Andreas Reichert for performing ESI-MS measurements. The authors are also grateful to Dr. Manfred S. Weiss and the BESSY beamline 14.3 of the Helmholtz-Zentrum Berlin, Germany, for technical and financial support. Anticalin® is a registered trademark of Pieris Pharmaceuticals GmbH.

References

Abe, E., Lemaire-Hurtel, A.-S., Duverneuil, C., Etting, I., Guillot, E., de Mazancourt, P., and Alvarez, J.-C. (2006). A novel LC-ESI-MS-MS method for sensitive quantification of colchicine in human plasma: application to two case reports. J. Anal. Toxicol. 30, 210–215.10.1093/jat/30.3.210Search in Google Scholar

Abergel, R.J., Clifton, M.C., Pizarro, J.C., Warner, J.A., Shuh, D.K., Strong, R.K., and Raymond, K.N. (2008). The siderocalin/ enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J. Am. Chem. Soc. 130, 11524–11534.10.1021/ja803524wSearch in Google Scholar

Bagnato, J.D., Eilers, A.L., Horton, R.A., and Grissom, C.B. (2004). Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin. J. Org. Chem. 69, 8987–8996.10.1021/jo049953wSearch in Google Scholar

Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041.10.1073/pnas.181342398Search in Google Scholar

Banerjee, A. and Luduena, R.F. (1987). Kinetics of association and dissociation of colchicine-tubulin complex from brain and renal tubulin. Evidence for the existence of multiple isotypes of tubulin in brain with differential affinity to colchicine. FEBS Lett. 219, 103–107.10.1016/0014-5793(87)81199-7Search in Google Scholar

Baud, F.J., Sabouraud, A., Vicaut, E., Taboulet, P., Lang, J., Bismuth, C., Rouzioux, J.M., and Scherrmann, J.M. (1995). Brief report: treatment of severe colchicine overdose with colchicine-specific Fab fragments. N. Engl. J. Med. 332, 642–645.10.1056/NEJM199503093321004Search in Google Scholar PubMed

Binder, U., Matschiner, G., Theobald, I., and Skerra, A. (2010). High-throughput sorting of an Anticalin library via EspP-mediated functional display on the Escherichia coli cell surface. J. Mol. Biol. 400, 783–802.10.1016/j.jmb.2010.05.049Search in Google Scholar PubMed

Borron, S.W., Scherrmann, J.M., and Baud, F.J. (1996). Markedly altered colchicine kinetics in a fatal intoxication: examination of contributing factors. Hum. Exp. Toxicol. 15, 885–890.10.1177/096032719601501104Search in Google Scholar PubMed

Brncić, N., Visković, I., Perić, R., Dirlić, A., Vitezić, D., and Cuculić, D. (2001). Accidental plant poisoning with Colchicum autumnale: report of two cases. Croat. Med. J. 42, 673–675.Search in Google Scholar

Brvar, M., Kozelj, G., Mozina, M., and Bunc, M. (2004). Acute poisoning with autumn crocus (Colchicum autumnale L.). Wien. Klin. Wochenschr. 116, 205–208.10.1007/BF03040489Search in Google Scholar PubMed

CCP4. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763.10.1107/S0907444994003112Search in Google Scholar PubMed

Cerquaglia, C., Diaco, M., Nucera, G., La Regina, M., Montalto, M., and Manna, R. (2005). Pharmacological and clinical basis of treatment of familial Mediterranean fever (FMF) with colchicine or analogues: an update. Curr. Drug Targets Inflamm. Allergy 4, 117–124.10.2174/1568010053622984Search in Google Scholar PubMed

Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21.10.1107/97809553602060000884Search in Google Scholar

Colovos, C. and Yeates, T.O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519.10.1002/pro.5560020916Search in Google Scholar PubMed PubMed Central

Correnti, C. and Strong, R.K. (2012). Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. J. Biol. Chem. 287, 13524–13531.10.1074/jbc.R111.311829Search in Google Scholar PubMed PubMed Central

Danel, V.C., Wiart, J.F., Hardy, G.A., Vincent, F.H., and Houdret, N.M. (2001). Self-poisoning with Colchicum autumnale L. flowers. J. Toxicol. Clin. Toxicol. 39, 409–411.10.1081/CLT-100105163Search in Google Scholar PubMed

Dauner, M., Eichinger, A., Lücking, G., Scherer, S., and Skerra, A. (2018). Reprogramming human siderocalin to neutralize petrobactin, the essential iron scavenger of anthrax bacillus. Angew. Chem. Int. Ed. Engl. 57, 14619–14623.10.1002/anie.201807442Search in Google Scholar PubMed

DeLano, W.L. (2002) The PyMOL Molecular Graphics System (San Carlos, CA, USA: DeLano Scientific).Search in Google Scholar

Deveaux, M., Hubert, N., and Demarly, C. (2004). Colchicine poisoning: case report of two suicides. Forensic Sci. Int. 143, 219–222.10.1016/j.forsciint.2004.02.040Search in Google Scholar PubMed

Eddleston, M., Fabresse, N., Thompson, A., Al Abdulla, I., Gregson, R., King, T., Astier, A., Baud, F.J., Clutton, R.E., and Alvarez, J.-C. (2018). Anti-colchicine Fab fragments prevent lethal colchicine toxicity in a porcine model: a pharmacokinetic and clinical study. Clin. Toxicol. 56, 1–9.10.1080/15563650.2017.1422510Search in Google Scholar PubMed PubMed Central

Emsley, P. and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132.10.1107/S0907444904019158Search in Google Scholar PubMed

Eyer, F., Steimer, W., Nitzsche, T., Jung, N., Neuberger, H., Müller, C., Schlapschy, M., Zilker, T., and Skerra, A. (2012). Intravenous application of an anticalin dramatically lowers plasma digoxin levels and reduces its toxic effects in rats. Toxicol. Appl. Pharmacol. 263, 352–359.10.1016/j.taap.2012.07.009Search in Google Scholar PubMed

Fabresse, N., Allard, J., Sardaby, M., Thompson, A., Clutton, R.E., Eddleston, M., and Alvarez, J.-C. (2017). LC-MS/MS quantification of free and Fab-bound colchicine in plasma, urine and organs following colchicine administration and colchicine-specific Fab fragments treatment in Göttingen minipigs. J. Chromatogr. B 1060, 400–406.10.1016/j.jchromb.2017.06.034Search in Google Scholar

Folpini, A. and Furfori, P. (1995). Colchicine toxicity – clinical features and treatment. Massive overdose case report. J. Toxicol. Clin. Toxicol. 33, 71–77.10.3109/15563659509020219Search in Google Scholar

Friedrich, L., Kornberger, P., Mendler, C.T., Multhoff, G., Schwaiger, M., and Skerra, A. (2017). Selection of an Anticalin® against the membrane form of Hsp70 via bacterial surface display and its theranostic application in tumour models. Biol. Chem. 399, 235–252.10.1515/hsz-2017-0207Search in Google Scholar

Ganfornina, M.D., Gutierrez, G., Bastiani, M., and Sanchez, D. (2000). A phylogenetic analysis of the lipocalin protein family. Mol. Biol. Evol. 17, 114–126.10.1093/oxfordjournals.molbev.a026224Search in Google Scholar

Gebauer, M. and Skerra, A. (2012). Anticalins: small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol. 503, 157–188.10.1016/B978-0-12-396962-0.00007-0Search in Google Scholar

Gebauer, M., Schiefner, A., Matschiner, G., and Skerra, A. (2013). Combinatorial design of an Anticalin directed against the extra-domain B for the specific targeting of oncofetal fibronectin. J. Mol. Biol. 425, 780–802.10.1016/j.jmb.2012.12.004Search in Google Scholar

Goetz, D.H., Holmes, M.A., Borregaard, N., Bluhm, M.E., Raymond, K.N., and Strong, R.K. (2002). The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043.10.1016/S1097-2765(02)00708-6Search in Google Scholar

Hartung, E.F. (1954). History of the use of Colchicum and related medicaments in gout. Ann. Rheum. Dis. 13, 190–200.10.1136/ard.13.3.190Search in Google Scholar PubMed PubMed Central

Hooft, R.W., Vriend, G., Sander, C., and Abola, E.E. (1996). Errors in protein structures. Nature 381, 272.10.1038/381272a0Search in Google Scholar PubMed

Joosten, R.P., Long, F., Murshudov, G.N., and Perrakis, A. (2014). The PDB_REDO server for macromolecular structure model optimization. IUCrJ 1, 213–220.10.1107/S2052252514009324Search in Google Scholar PubMed PubMed Central

Jose, J., Krämer, J., Klauser, T., Pohlner, J., and Meyer, T.F. (1996). Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Igaβ autotransporter pathway. Gene 178, 107–110.10.1016/0378-1119(96)00343-5Search in Google Scholar

Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.10.1002/bip.360221211Search in Google Scholar

Kim, H.J., Eichinger, A., and Skerra, A. (2009). High-affinity recognition of lanthanide(III) chelate complexes by a reprogrammed human lipocalin 2. J. Am. Chem. Soc. 131, 3565–3576.10.1021/ja806857rSearch in Google Scholar

Klintschar, M., Beham-Schmidt, C., Radner, H., Henning, G., and Roll, P. (1999). Colchicine poisoning by accidental ingestion of meadow saffron (Colchicum autumnale): pathological and medicolegal aspects. Forensic Sci. Int. 106, 191–200.10.1016/S0379-0738(99)00191-7Search in Google Scholar

Kreutzberg, G.W. (1969). Neuronal dynamics and axonal flow, IV. Blockage of intra-axonal transport by colchicine. Proc. Natl. Acad. Sci. USA 62, 722–728.10.1073/pnas.62.3.722Search in Google Scholar PubMed PubMed Central

Krissinel, E. and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797.10.1016/j.jmb.2007.05.022Search in Google Scholar PubMed

Laskowski, R.A., MacArthur, M.W., Mos, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291.10.1107/S0021889892009944Search in Google Scholar

Link, L.H., Bindels, A.J.G.H., Brassé, B.P., Intven, F.A., Grouls, R.J.E., and Roos, A.N. (2014). Severe colchicine intoxication; always lethal? Neth. J. Crit. Care 18, 20–22.Search in Google Scholar

Luthy, R., Bowie, J.U., and Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature 356, 83–85.10.1038/356083a0Search in Google Scholar PubMed

Malakhov, M.P., Mattern, M.R., Malakhova, O.A., Drinker, M., Weeks, S.D., and Butt, T.R. (2004). SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genomics 5, 75–86.10.1023/B:JSFG.0000029237.70316.52Search in Google Scholar

Malawista, S.E. (1968). Colchicine: a common mechanism for its anti-inflammatory and anti-mitotic effects. Arthritis Rheum. 11, 191–197.10.1002/art.1780110210Search in Google Scholar PubMed

McCreery, T. (1997). Digoxigenin labeling. Mol. Biotechnol. 7, 121–124.10.1007/BF02761747Search in Google Scholar PubMed

Miyachi, Y., Taniguchi, S., Ozaki, M., and Horio, T. (1981). Colchicine in the treatment of the cutaneous manifestations of Behcet’s disease. Br. J. Dermatol. 104, 67–70.10.1111/j.1365-2133.1981.tb01713.xSearch in Google Scholar PubMed

Nagesh, K.R., Menezes, R.G., Rastogi, P., Naik, N.R., Rasquinha, J.M., Senthilkumaran, S., and Fazil, A. (2011). Suicidal plant poisoning with Colchicum autumnale. J. Forensic Leg. Med. 18, 285–287.10.1016/j.jflm.2011.04.008Search in Google Scholar PubMed

Niel, E. and Scherrmann, J.-M. (2006). Colchicine today. Joint Bone Spine 73, 672–678.10.1016/j.jbspin.2006.03.006Search in Google Scholar PubMed

Nuki, G. (2008). Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. Curr. Rheumatol. Rep. 10, 218–227.10.1007/s11926-008-0036-3Search in Google Scholar PubMed

Panda, D., Daijo, J.E., Jordan, M.A., and Wilson, L. (1995). Kinetic stabilization of microtubule dynamics at steady state in vitro by substoichiometric concentrations of tubulin-colchicine complex. Biochemistry 34, 9921–9929.10.1021/bi00031a014Search in Google Scholar PubMed

Peake, P.W., Pianta, T.J., Succar, L., Fernando, M., Buckley, N.A., and Endre, Z.H. (2015). Fab fragments of ovine antibody to colchicine enhance its clearance in the rat. Clin. Toxicol. 53, 1–6.10.3109/15563650.2015.1030026Search in Google Scholar PubMed

Pontius, J., Richelle, J., and Wodak, S.J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol. 264, 121–136.10.1006/jmbi.1996.0628Search in Google Scholar PubMed

Rauth, S., Hinz, D., Börger, M., Uhrig, M., Mayhaus, M., Riemenschneider, M., and Skerra, A. (2016). High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide. Biochem. J. 473, 1563–1578.10.1042/BCJ20160114Search in Google Scholar PubMed PubMed Central

Richter, A., Eggenstein, E., and Skerra, A. (2014). Anticalins: exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett. 588, 213–218.10.1016/j.febslet.2013.11.006Search in Google Scholar PubMed

Rochdi, M., Sabouraud, A., Girre, C., Venet, R., and Scherrmann, J.M. (1994). Pharmacokinetics and absolute bioavailability of colchicine after i.v. and oral administration in healthy human volunteers and elderly subjects. Eur. J. Clin. Pharmacol. 46, 351–354.10.1007/BF00194404Search in Google Scholar

Rothe, C. and Skerra, A. (2018). Anticalin® proteins as therapeutic agents in human diseases. Biodrugs 32, 233–243.10.1007/s40259-018-0278-1Search in Google Scholar

Sabouraud, A., Urtizberea, M., Grandgeorge, M., Gattel, P., Makula, M.E., and Scherrmann, J.M. (1991). Dose-dependent reversal of acute murine colchicine poisoning by goat colchicine-specific Fab fragments. Toxicology 68, 121–132.10.1016/0300-483X(91)90015-SSearch in Google Scholar

Schiefner, A. and Skerra, A. (2015). The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds. Acc. Chem. Res. 48, 976–985.10.1021/ar5003973Search in Google Scholar

Schlehuber, S., Beste, G., and Skerra, A. (2000). A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J. Mol. Biol. 297, 1105–1120.10.1006/jmbi.2000.3646Search in Google Scholar

Schlehuber, S. and Skerra, A. (2005). Lipocalins in drug discovery: from natural ligand-binding proteins to “Anticalins”. Drug Discov. Today 10, 23–33.10.1016/S1359-6446(04)03294-5Search in Google Scholar

Schmidt, T.G.M. and Skerra, A. (2007). The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat. Protoc. 2, 1528–1535.10.1038/nprot.2007.209Search in Google Scholar

Schönfeld, D., Matschiner, G., Chatwell, L., Trentmann, S., Gille, H., Hülsmeyer, M., Brown, N., Kaye, P.M., Schlehuber, S., Hohlbaum, A.M., et al. (2009). An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc. Natl. Acad. Sci. USA 106, 8198–8203.10.1073/pnas.0813399106Search in Google Scholar

Skerra, A. (2000). Lipocalins as a scaffold. Biochim. Biophys. Acta 1482, 337–350.10.1016/S0167-4838(00)00145-XSearch in Google Scholar

Stapczynski, J.S., Rothstein, R.J., Gaye, W.A., and Niemann, J.T. (1981). Colchicine overdose: report of two cases and review of the literature. Ann. Emerg. Med. 10, 364–369.10.1016/S0196-0644(81)80239-9Search in Google Scholar

Terrien, N., Urtizberea, M., and Scherrmann, J.M. (1990). Reversal of advanced colchicine toxicity in mice with goat colchicine-specific antibodies. Toxicol. Appl. Pharmacol. 104, 504–510.10.1016/0041-008X(90)90172-QSearch in Google Scholar

Vogt, M. and Skerra, A. (2001). Bacterially produced apolipoprotein D binds progesterone and arachidonic acid, but not bilirubin or E-3M2H. J. Mol. Recognit. 14, 79–86.10.1002/1099-1352(200101/02)14:1<79::AID-JMR521>3.0.CO;2-4Search in Google Scholar

Voss, E.W. (1984). Fluorescein Hapten: An Immunological Probe (Boca Raton, FL: CRC Press).Search in Google Scholar

Wallace, L. and Ertel, H. (1970). Colchicine plasma levels: implications as to pharmacology and mechanism of action. Am. J. Med. 48, 443–448.10.1016/0002-9343(70)90043-4Search in Google Scholar

Walsh, G. (2007). Pharmaceutical Biotechnology: Concepts and Applications (Chichester, England: Wiley).Search in Google Scholar

Wehner, F., Musshoff, F., Schulz, M., Martin, D., and Wehner, H.-D. (2006). Detection of colchicine by means of LC-MS/MS after mistaking meadow saffron for bear’s garlic. Forensic Sci. Med. Pathol. 2, 193–197.10.1007/s12024-006-0009-7Search in Google Scholar

Weichenberger, C.X. and Sippl, M.J. (2007). NQ-Flipper: recognition and correction of erroneous asparagine and glutamine side-chain rotamers in protein structures. Nucleic Acids Res. 35, W403–W406.10.1093/nar/gkm263Search in Google Scholar

Wilchek, M., Bayer, E.A., and Livnah, O. (2006). Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunol. Lett. 103, 27–32.10.1016/j.imlet.2005.10.022Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0342).


Received: 2018-08-12
Accepted: 2018-11-14
Published Online: 2018-12-22
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2018-0342/html
Scroll to top button