Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 2, 2018

The neutral sphingomyelinase 2 in T cell receptor signaling and polarity

  • Lena Collenburg , Sibylle Schneider-Schaulies and Elita Avota EMAIL logo
From the journal Biological Chemistry

Abstract

By hydrolyzing its substrate sphingomyelin at the cytosolic leaflet of cellular membranes, the neutral sphingomyelinase 2 (NSM2) generates microdomains which serve as docking sites for signaling proteins and thereby, functions to regulate signal relay. This has been particularly studied in cellular stress responses while the regulatory role of this enzyme in the immune cell compartment has only recently emerged. In T cells, phenotypic polarization by co-ordinated cytoskeletal remodeling is central to motility and interaction with endothelial or antigen-presenting cells during tissue recruitment or immune synapse formation, respectively. This review highlights studies adressing the role of NSM2 in T cell polarity in which the enzyme plays a major role in regulating cytoskeletal dynamics.

Acknowledgments

We apologize to all our colleagues whose exciting work we were not able to include due to space limits. We thank Erich Gulbins, Jürgen Schneider-Schaulies and Niklas Beyersdorf for helpful discussions in preparing this article. The authors are grateful to the DFG for funding their work (Funder ID: 10.13039/501100001659, Grant no. SCHN405/10-1 and 10-2).

References

Airola, M.V. and Hannun, Y.A. (2013). Sphingolipid metabolism and neutral sphingomyelinases. Handb. Exp. Pharmacol. 215, 57–76.10.1007/978-3-7091-1368-4_3Search in Google Scholar PubMed PubMed Central

Airola, M.V., Shanbhogue, P., Shamseddine, A.A., Guja, K.E., Senkal, C.E., Maini, R., Bartke, N., Wu, B.X., Obeid, L.M., Garcia-Diaz, M., et al. (2017). Structure of human nSMase2 reveals an interdomain allosteric activation mechanism for ceramide generation. Proc. Natl. Acad. Sci. USA 114, E5549–E5558.10.1073/pnas.1705134114Search in Google Scholar PubMed PubMed Central

Baldanzi, G., Bettio, V., Malacarne, V., and Graziani, A. (2016). Diacylglycerol kinases: shaping diacylglycerol and phosphatidic acid gradients to control cell polarity. Front. Cell Dev. Biol. 4, 140.10.3389/fcell.2016.00140Search in Google Scholar PubMed PubMed Central

Boecke, A., Sieger, D., Neacsu, C.D., Kashkar, H., and Kronke, M. (2012). Factor associated with neutral sphingomyelinase activity mediates navigational capacity of leukocytes responding to wounds and infection: live imaging studies in zebrafish larvae. J. Immunol. 189, 1559–1566.10.4049/jimmunol.1102207Search in Google Scholar PubMed PubMed Central

Bornschlogl, T. (2013). How filopodia pull: what we know about the mechanics and dynamics of filopodia. Cytoskeleton 70, 590–603.10.1002/cm.21130Search in Google Scholar PubMed

Boucher, L.M., Wiegmann, K., Futterer, A., Pfeffer, K., Machleidt, T., Schutze, S., Mak, T.W., and Kronke, M. (1995). CD28 signals through acidic sphingomyelinase. J. Exp. Med. 181, 2059–2068.10.1084/jem.181.6.2059Search in Google Scholar PubMed PubMed Central

Burkhardt, J.K., Carrizosa, E., and Shaffer, M.H. (2008). The actin cytoskeleton in T cell activation. Annu. Rev. Immunol. 26, 233–259.10.1146/annurev.immunol.26.021607.090347Search in Google Scholar PubMed

Cabukusta, B., Kol, M., Kneller, L., Hilderink, A., Bickert, A., Mina, J.G., Korneev, S., and Holthuis, J.C. (2017). ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain. Sci. Rep. 7, 41290.10.1038/srep41290Search in Google Scholar PubMed PubMed Central

Carpinteiro, A., Becker, K.A., Japtok, L., Hessler, G., Keitsch, S., Pozgajova, M., Schmid, K.W., Adams, C., Muller, S., Kleuser, B., et al. (2015). Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol. Med. 7, 714–734.10.15252/emmm.201404571Search in Google Scholar PubMed PubMed Central

Carpinteiro, A., Beckmann, N., Seitz, A., Hessler, G., Wilker, B., Soddemann, M., Helfrich, I., Edelmann, B., Gulbins, E., and Becker, K.A. (2016). Role of acid sphingomyelinase-induced signaling in melanoma cells for hematogenous tumor metastasis. Cell. Physiol. Biochem. 38, 1–14.10.1159/000438604Search in Google Scholar PubMed

Cascianelli, G., Villani, M., Tosti, M., Marini, F., Bartoccini, E., Magni, M.V., and Albi, E. (2008). Lipid microdomains in cell nucleus. Mol. Biol. Cell 19, 5289–5295.10.1091/mbc.e08-05-0517Search in Google Scholar PubMed PubMed Central

Chan, G. and Ochi, A. (1995). Sphingomyelin-ceramide turnover in CD28 costimulatory signaling. Eur. J. Immunol. 25, 1999–2004.10.1002/eji.1830250730Search in Google Scholar PubMed

Chang, Y.C., Nalbant, P., Birkenfeld, J., Chang, Z.F., and Bokoch, G.M. (2008). GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol. Biol. Cell 19, 2147–2153.10.1091/mbc.e07-12-1269Search in Google Scholar PubMed PubMed Central

Chichili, G.R., Westmuckett, A.D., and Rodgers, W. (2010). T cell signal regulation by the actin cytoskeleton. J. Biol. Chem. 285, 14737–14746.10.1074/jbc.M109.097311Search in Google Scholar PubMed PubMed Central

Clarke, C.J., Guthrie, J.M., and Hannun, Y.A. (2008). Regulation of neutral sphingomyelinase-2 (nSMase2) by tumor necrosis factor-α involves protein kinase C-δ in lung epithelial cells. Mol. Pharmacol. 74, 1022–1032.10.1124/mol.108.046250Search in Google Scholar PubMed PubMed Central

Clarke, C.J., Snook, C.F., Tani, M., Matmati, N., Marchesini, N., and Hannun, Y.A. (2006). The extended family of neutral sphingomyelinases. Biochemistry 45, 11247–11256.10.1021/bi061307zSearch in Google Scholar PubMed

Collenburg, L., Walter, T., Burgert, A., Muller, N., Seibel, J., Japtok, L., Kleuser, B., Sauer, M., and Schneider-Schaulies, S. (2016). A functionalized sphingolipid analogue for studying redistribution during activation in living T cells. J. Immunol. 196, 3951–3962.10.4049/jimmunol.1502447Search in Google Scholar PubMed

Collenburg, L., Beyersdorf, N., Wiese, T., Arenz, C., Saied, E.M., Becker-Flegler, K.A., Schneider-Schaulies, S., and Avota, E. (2017). The activity of the neutral sphingomyelinase is important in T cell recruitment and directional migration. Front. Immunol. 8, 1007.10.3389/fimmu.2017.01007Search in Google Scholar PubMed PubMed Central

Eich, C., Manzo, C., Keijzer, S., Bakker, G.J., Reinieren-Beeren, I., Garcia-Parajo, M.F., and Cambi, A. (2016). Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters. Sci. Rep. 6, 20693.10.1038/srep20693Search in Google Scholar PubMed PubMed Central

Erdmann, R.S., Takakura, H., Thompson, A.D., Rivera-Molina, F., Allgeyer, E.S., Bewersdorf, J., Toomre, D., and Schepartz, A. (2014). Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. Angew. Chem. Int. Ed. 53, 10242–10246.10.1002/anie.201403349Search in Google Scholar PubMed PubMed Central

Faulstich, M., Hagen, F., Avota, E., Kozjak-Pavlovic, V., Winkler, A.C., Xian, Y., Schneider-Schaulies, S., and Rudel, T. (2015). Neutral sphingomyelinase 2 is a key factor for PorB-dependent invasion of Neisseria gonorrhoeae. Cell. Microbiol. 17, 241–253.10.1111/cmi.12361Search in Google Scholar PubMed

Feldhaus, M.J., Weyrich, A.S., Zimmerman, G.A., and McIntyre, T.M. (2002). Ceramide generation in situ alters leukocyte cytoskeletal organization and β2-integrin function and causes complete degranulation. J. Biol. Chem. 277, 4285–4293.10.1074/jbc.M106653200Search in Google Scholar PubMed

Fernandez-Arenas, E., Calleja, E., Martinez-Martin, N., Gharbi, S.I., Navajas, R., Garcia-Medel, N., Penela, P., Alcami, A., Mayor, F., Jr., Albar, J.P., et al. (2014). β-Arrestin-1 mediates the TCR-triggered re-routing of distal receptors to the immunological synapse by a PKC-mediated mechanism. EMBO J. 33, 559–577.10.1002/embj.201386022Search in Google Scholar PubMed PubMed Central

Filosto, S., Fry, W., Knowlton, A.A., and Goldkorn, T. (2010). Neutral sphingomyelinase 2 (nSMase2) is a phosphoprotein regulated by calcineurin (PP2B). J. Biol. Chem. 285, 10213–10222.10.1074/jbc.M109.069963Search in Google Scholar PubMed PubMed Central

Filosto, S., Ashfaq, M., Chung, S., Fry, W., and Goldkorn, T. (2012). Neutral sphingomyelinase 2 activity and protein stability are modulated by phosphorylation of five conserved serines. J. Biol. Chem. 287, 514–522.10.1074/jbc.M111.315481Search in Google Scholar PubMed PubMed Central

Fox, T.E., Houck, K.L., O’Neill, S.M., Nagarajan, M., Stover, T.C., Pomianowski, P.T., Unal, O., Yun, J.K., Naides, S.J., and Kester, M. (2007). Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J. Biol. Chem. 282, 12450–12457.10.1074/jbc.M700082200Search in Google Scholar PubMed

Gassert, E., Avota, E., Harms, H., Krohne, G., Gulbins, E., and Schneider-Schaulies, S. (2009). Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog. 5, e1000623.10.1371/journal.ppat.1000623Search in Google Scholar PubMed PubMed Central

Gault, C.R., Obeid, L.M., and Hannun, Y.A. (2010). An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1–23.10.1007/978-1-4419-6741-1_1Search in Google Scholar PubMed PubMed Central

Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W., and Harder, T. (2005). Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131.10.1083/jcb.200505047Search in Google Scholar PubMed PubMed Central

Gerl, M.J., Bittl, V., Kirchner, S., Sachsenheimer, T., Brunner, H.L., Luchtenborg, C., Ozbalci, C., Wiedemann, H., Wegehingel, S., Nickel, W., et al. (2016). Sphingosine-1-phosphate lyase deficient cells as a tool to study protein lipid interactions. PLoS One 11, e0153009.10.1371/journal.pone.0153009Search in Google Scholar PubMed PubMed Central

Giri, B., Dixit, V.D., Ghosh, M.C., Collins, G.D., Khan, I.U., Madara, K., Weeraratna, A.T., and Taub, D.D. (2007). CXCL12-induced partitioning of flotillin-1 with lipid rafts plays a role in CXCR4 function. Eur. J. Immunol. 37, 2104–2116.10.1002/eji.200636680Search in Google Scholar PubMed PubMed Central

Gomez-Mouton, C., Abad, J.L., Mira, E., Lacalle, R.A., Gallardo, E., Jimenez-Baranda, S., Illa, I., Bernad, A., Manes, S., and Martinez, A.C. (2001). Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl. Acad. Sci. USA 98, 9642–9647.10.1073/pnas.171160298Search in Google Scholar PubMed PubMed Central

Grassme, H., Henry, B., Ziobro, R., Becker, K.A., Riethmuller, J., Gardner, A., Seitz, A.P., Steinmann, J., Lang, S., Ward, C., et al. (2017). β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell Host Microbe 21, 707–718.10.1016/j.chom.2017.05.001Search in Google Scholar PubMed PubMed Central

Haberkant, P., Stein, F., Hoglinger, D., Gerl, M.J., Brugger, B., Van Veldhoven, P.P., Krijgsveld, J., Gavin, A.C., and Schultz, C. (2016). Bifunctional sphingosine for cell-based analysis of protein-sphingolipid interactions. ACS Chem. Biol. 11, 222–230.10.1021/acschembio.5b00810Search in Google Scholar PubMed

Harder, T., Rentero, C., Zech, T., and Gaus, K. (2007). Plasma membrane segregation during T cell activation: probing the order of domains. Curr. Opin. Immunol. 19, 470–475.10.1016/j.coi.2007.05.002Search in Google Scholar PubMed

Hashimoto-Tane, A., Yokosuka, T., Sakata-Sogawa, K., Sakuma, M., Ishihara, C., Tokunaga, M., and Saito, T. (2011). Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity 34, 919–931.10.1016/j.immuni.2011.05.012Search in Google Scholar PubMed

He, Q., Wang, G., Wakade, S., Dasgupta, S., Dinkins, M., Kong, J.N., Spassieva, S.D., and Bieberich, E. (2014). Primary cilia in stem cells and neural progenitors are regulated by neutral sphingomyelinase 2 and ceramide. Mol. Biol. Cell 25, 1715–1729.10.1091/mbc.e13-12-0730Search in Google Scholar

Hogg, N., Patzak, I., and Willenbrock, F. (2011). The insider’s guide to leukocyte integrin signalling and function. Nat. Rev. Immunol. 11, 416–426.10.1038/nri2986Search in Google Scholar PubMed

Hoglinger, D., Nadler, A., and Schultz, C. (2014). Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta 1841, 1085–1096.10.1016/j.bbalip.2014.03.012Search in Google Scholar PubMed

Hoglinger, D., Nadler, A., Haberkant, P., Kirkpatrick, J., Schifferer, M., Stein, F., Hauke, S., Porter, F.D., and Schultz, C. (2017). Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc. Natl. Acad. Sci. USA 114, 1566–1571.10.1073/pnas.1611096114Search in Google Scholar PubMed PubMed Central

Junge, S., Brenner, B., Lepple-Wienhues, A., Nilius, B., Lang, F., Linderkamp, O., and Gulbins, E. (1999). Intracellular mechanisms of L-selectin induced capping. Cell Signal 11, 301–308.10.1016/S0898-6568(98)00068-0Search in Google Scholar

Katsuno, H., Toriyama, M., Hosokawa, Y., Mizuno, K., Ikeda, K., Sakumura, Y., and Inagaki, N. (2015). Actin migration driven by directional assembly and disassembly of membrane-anchored actin filaments. Cell Rep. 12, 648–660.10.1016/j.celrep.2015.06.048Search in Google Scholar PubMed

Krishnamurthy, K., Wang, G., Silva, J., Condie, B.G., and Bieberich, E. (2007). Ceramide regulates atypical PKCζ/λ-mediated cell polarity in primitive ectoderm cells. A novel function of sphingolipids in morphogenesis. J. Biol. Chem. 282, 3379–3390.10.1074/jbc.M607779200Search in Google Scholar PubMed

Lasserre, R., Guo, X.J., Conchonaud, F., Hamon, Y., Hawchar, O., Bernard, A.M., Soudja, S.M., Lenne, P.F., Rigneault, H., Olive, D., et al. (2008). Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat. Chem. Biol. 4, 538–547.10.1038/nchembio.103Search in Google Scholar PubMed

Lee, Y.G., Lee, J., and Cho, J.Y. (2010). Cell-permeable ceramides act as novel regulators of U937 cell-cell adhesion mediated by CD29, CD98, and CD147. Immunobiology 215, 294–303.10.1016/j.imbio.2009.05.009Search in Google Scholar PubMed

Legler, D.F., Matti, C., Laufer, J.M., Jakobs, B.D., Purvanov, V., Uetz-von Allmen, E., and Thelen, M. (2017). Modulation of chemokine receptor function by cholesterol: new prospects for pharmacological intervention. Mol. Pharmacol. 91, 331–338.10.1124/mol.116.107151Search in Google Scholar PubMed

Leijnse, N., Oddershede, L.B., and Bendix, P.M. (2015). An updated look at actin dynamics in filopodia. Cytoskeleton 72, 71–79.10.1002/cm.21216Search in Google Scholar PubMed

Leithner, A., Eichner, A., Muller, J., Reversat, A., Brown, M., Schwarz, J., Merrin, J., de Gorter, D.J., Schur, F., Bayerl, J., et al. (2016). Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nat. Cell Biol. 18, 1253–1259.10.1038/ncb3426Search in Google Scholar PubMed

Ley, K., Laudanna, C., Cybulsky, M.I., and Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689.10.1038/nri2156Search in Google Scholar PubMed

Li, C., Peng, H., Japtok, L., Seitz, A., Riehle, A., Wilker, B., Soddemann, M., Kleuser, B., Edwards, M., Lammas, D., et al. (2016). Inhibition of neutral sphingomyelinase protects mice against systemic tuberculosis. Front. Biosci. 8, 311–325.10.2741/e769Search in Google Scholar

Lopes Pinheiro, M.A., Kroon, J., Hoogenboezem, M., Geerts, D., van Het Hof, B., van der Pol, S.M., van Buul, J.D., and de Vries, H.E. (2016). Acid sphingomyelinase-derived ceramide regulates icam-1 function during t cell transmigration across brain endothelial cells. J. Immunol. 196, 72–79.10.4049/jimmunol.1500702Search in Google Scholar PubMed

Martin-Cofreces, N.B., Robles-Valero, J., Cabrero, J.R., Mittelbrunn, M., Gordon-Alonso, M., Sung, C.H., Alarcon, B., Vazquez, J., and Sanchez-Madrid, F. (2008). MTOC translocation modulates IS formation and controls sustained T cell signaling. J. Cell Biol. 182, 951–962.10.1083/jcb.200801014Search in Google Scholar PubMed PubMed Central

Martin-Cofreces, N.B., Baixauli, F., and Sanchez-Madrid, F. (2014). Immune synapse: conductor of orchestrated organelle movement. Trends Cell Biol. 24, 61–72.10.1016/j.tcb.2013.09.005Search in Google Scholar PubMed PubMed Central

Miguel, L., Owen, D.M., Lim, C., Liebig, C., Evans, J., Magee, A.I., and Jury, E.C. (2011). Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function. J. Immunol. 186, 3505–3516.10.4049/jimmunol.1002980Search in Google Scholar PubMed

Mittelbrunn, M., Gutierrez-Vazquez, C., Villarroya-Beltri, C., Gonzalez, S., Sanchez-Cabo, F., Gonzalez, M.A., Bernad, A., and Sanchez-Madrid, F. (2011). Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282.10.1038/ncomms1285Search in Google Scholar PubMed PubMed Central

Moser, M., Bauer, M., Schmid, S., Ruppert, R., Schmidt, S., Sixt, M., Wang, H.V., Sperandio, M., and Fassler, R. (2009). Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nat. Med. 15, 300–305.10.1038/nm.1921Search in Google Scholar PubMed

Mueller, N., Avota, E., Collenburg, L., Grassme, H., and Schneider-Schaulies, S. (2014). Neutral sphingomyelinase in physiological and measles virus induced T cell suppression. PLoS Pathog. 10, e1004574.10.1371/journal.ppat.1004574Search in Google Scholar PubMed PubMed Central

Ni, H.T., Deeths, M.J., Li, W., Mueller, D.L., and Mescher, M.F. (1999). Signaling pathways activated by leukocyte function-associated Ag-1-dependent costimulation. J. Immunol. 162, 5183–5189.10.4049/jimmunol.162.9.5183Search in Google Scholar

Nordenfelt, P., Elliott, H.L., and Springer, T.A. (2016). Coordinated integrin activation by actin-dependent force during T-cell migration. Nat. Commun. 7, 13119.10.1038/ncomms13119Search in Google Scholar PubMed PubMed Central

Nourshargh, S. and Alon, R. (2014). Leukocyte migration into inflamed tissues. Immunity 41, 694–707.10.1016/j.immuni.2014.10.008Search in Google Scholar PubMed

Pageon, S.V., Tabarin, T., Yamamoto, Y., Ma, Y., Bridgeman, J.S., Cohnen, A., Benzing, C., Gao, Y., Crowther, M.D., Tungatt, K., et al. (2016). Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc. Natl. Acad. Sci. USA 113, E5454–E5463.10.1073/pnas.1607436113Search in Google Scholar PubMed PubMed Central

Philipp, S., Puchert, M., Adam-Klages, S., Tchikov, V., Winoto-Morbach, S., Mathieu, S., Deerberg, A., Kolker, L., Marchesini, N., Kabelitz, D., et al. (2010). The Polycomb group protein EED couples TNF receptor 1 to neutral sphingomyelinase. Proc. Natl. Acad. Sci. USA 107, 1112–1117.10.1073/pnas.0908486107Search in Google Scholar PubMed PubMed Central

Quann, E.J., Liu, X., Altan-Bonnet, G., and Huse, M. (2011). A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat. Immunol. 12, 647–654.10.1038/ni.2033Search in Google Scholar PubMed PubMed Central

Rossy, J., Williamson, D.J., Benzing, C., and Gaus, K. (2012). The integration of signaling and the spatial organization of the T cell synapse. Front. Immunol. 3, 352.10.3389/fimmu.2012.00352Search in Google Scholar PubMed PubMed Central

Sadik, C.D. and Luster, A.D. (2012). Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J. Leukoc. Biol. 91, 207–215.10.1189/jlb.0811402Search in Google Scholar PubMed PubMed Central

Shamseddine, A.A., Airola, M.V., and Hannun, Y.A. (2015). Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 57, 24–41.10.1016/j.jbior.2014.10.002Search in Google Scholar PubMed PubMed Central

Shi, X., Bi, Y., Yang, W., Guo, X., Jiang, Y., Wan, C., Li, L., Bai, Y., Guo, J., Wang, Y., et al. (2013). Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115.10.1038/nature11699Search in Google Scholar PubMed

Shulman, Z., Shinder, V., Klein, E., Grabovsky, V., Yeger, O., Geron, E., Montresor, A., Bolomini-Vittori, M., Feigelson, S.W., Kirchhausen, T., et al. (2009). Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30, 384–396.10.1016/j.immuni.2008.12.020Search in Google Scholar PubMed PubMed Central

Sitrin, R.G., Sassanella, T.M., and Petty, H.R. (2011). An obligate role for membrane-associated neutral sphingomyelinase activity in orienting chemotactic migration of human neutrophils. Am. J. Respir. Cell Mol. Biol. 44, 205–212.10.1165/rcmb.2010-0019OCSearch in Google Scholar PubMed PubMed Central

Stroka, K.M., Hayenga, H.N., and Aranda-Espinoza, H. (2013). Human neutrophil cytoskeletal dynamics and contractility actively contribute to trans-endothelial migration. PLoS One 8, e61377.10.1371/journal.pone.0061377Search in Google Scholar PubMed PubMed Central

Swamy, M., Beck-Garcia, K., Beck-Garcia, E., Hartl, F.A., Morath, A., Yousefi, O.S., Dopfer, E.P., Molnar, E., Schulze, A.K., Blanco, R., et al. (2016). A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44, 1091–1101.10.1016/j.immuni.2016.04.011Search in Google Scholar PubMed

Takesono, A., Heasman, S.J., Wojciak-Stothard, B., Garg, R., and Ridley, A.J. (2010). Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS One 5, e8774.10.1371/journal.pone.0008774Search in Google Scholar PubMed PubMed Central

Tonnetti, L., Veri, M.C., Bonvini, E., and D’Adamio, L. (1999). A role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction. J. Exp. Med. 189, 1581–1589.10.1084/jem.189.10.1581Search in Google Scholar PubMed PubMed Central

Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., and Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247.10.1126/science.1153124Search in Google Scholar PubMed

van Gijsel-Bonnello, M., Acar, N., Molino, Y., Bretillon, L., Khrestchatisky, M., de Reggi, M., and Gharib, B. (2015). Pantethine alters lipid composition and cholesterol content of membrane rafts, with down-regulation of CXCL12-induced T cell migration. J. Cell Physiol. 230, 2415–2425.10.1002/jcp.24971Search in Google Scholar PubMed

Walter, T., Collenburg, L., Japtok, L., Kleuser, B., Schneider-Schaulies, S., Muller, N., Becam, J., Schubert-Unkmeir, A., Kong, J.N., Bieberich, E., et al. (2016). Incorporation and visualization of azido-functionalized N-oleoyl serinol in Jurkat cells, mouse brain astrocytes, 3T3 fibroblasts and human brain microvascular endothelial cells. Chem. Commun. 52, 8612–8614.10.1039/C6CC02879ASearch in Google Scholar PubMed PubMed Central

Wang, G., Silva, J., Krishnamurthy, K., Tran, E., Condie, B.G., and Bieberich, E. (2005). Direct binding to ceramide activates protein kinase Cζ before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J. Biol. Chem. 280, 26415–26424.10.1074/jbc.M501492200Search in Google Scholar PubMed

Wang, G., Krishnamurthy, K., Umapathy, N.S., Verin, A.D., and Bieberich, E. (2009). The carboxyl-terminal domain of atypical protein kinase Cζ binds to ceramide and regulates junction formation in epithelial cells. J. Biol. Chem. 284, 14469–14475.10.1074/jbc.M808909200Search in Google Scholar PubMed PubMed Central

Wang, F., Beck-Garcia, K., Zorzin, C., Schamel, W.W., and Davis, M.M. (2016). Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat. Immunol. 17, 844–850.10.1038/ni.3462Search in Google Scholar PubMed PubMed Central

Wu, B.X., Clarke, C.J., and Hannun, Y.A. (2010). Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromol. Med. 12, 320–330.10.1007/s12017-010-8120-zSearch in Google Scholar PubMed PubMed Central

Zech, T., Ejsing, C.S., Gaus, K., de Wet, B., Shevchenko, A., Simons, K., and Harder, T. (2009). Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J 28, 466–476.10.1038/emboj.2009.6Search in Google Scholar PubMed PubMed Central

Received: 2017-11-02
Accepted: 2017-12-31
Published Online: 2018-02-02
Published in Print: 2018-09-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2017-0280/html
Scroll to top button