Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 29, 2017

Human U3 protein 14a plays an anti-apoptotic role in cancer cells

  • Teng Ma , Chenxi Lu , Yafei Guo , Chunfeng Zhang and Xiaojuan Du EMAIL logo
From the journal Biological Chemistry

Abstract

Human U three protein 14a (hUTP14a) binds p53 and promotes p53 degradation. Here, we report that hUTP14a plays an anti-apoptotic role in tumor cells through a p53-independent pathway. Knockdown of hUTP14a activated the intrinsic pathway of apoptosis and sensitized tumor cells to chemotherapeutic drug-induced apoptosis. In addition, the protein level of hUTP14a decreased upon chemotherapeutic drug- or irradiation-induced apoptosis. Importantly, the decrease of hUTP14a during induced apoptosis was not blocked by pan-caspase inhibitor z-VAD-FMK, indicating that the down-regulation of hUTP14a is an upstream event in apoptosis. Furthermore, ectopically expressed hUTP14a protected tumor cells from chemotherapeutic drug-induced apoptosis. In summary, our data showed that hUTP14a protected tumor cells from chemotherapeutic drug-induced apoptosis and thus might possess a potential as a target for anti-tumor therapy.

Acknowledgments

We thank Dr. H. Q for the assistance of taking photographs with confocal microscopy. This work was supported by grants from the 973 program (Grant No. 2013CB837201) and the National Natural Science Foundation of China (Grant No. 81321003).

References

Arima, Y., Nitta, M., Kuninaka, S., Zhang, D., Fujiwara, T., Taya, Y., Nakao, M., and Saya, H. (2005). Transcriptional blockade induces p53-dependent apoptosis associated with translocation of p53 to mitochondria. J. Biol. Chem. 280, 19166–19176.10.1074/jbc.M410691200Search in Google Scholar

Baldwin, E.L. and Osheroff, N. (2005). Etoposide, topoisomerase II and cancer. Curr. Medicinal Chem. Anti-Cancer Agents 5, 363–372.10.2174/1568011054222364Search in Google Scholar

Barrasa, J.I., Santiago-Gomez, A., Olmo, N., Lizarbe, M.A., and Turnay, J. (2012). Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax. Biochim. Biophys. Acta 1823, 2201–2209.10.1016/j.bbamcr.2012.08.008Search in Google Scholar

Boulares, A.H., Yakovlev, A.G., Ivanova, V., Stoica, B.A., Wang, G., Iyer, S., and Smulson, M. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J. Biol. Chem. 274, 22932–22940.10.1074/jbc.274.33.22932Search in Google Scholar

Bradley, J., Baltus, A., Skaletsky, H., Royce-Tolland, M., Dewar, K., and Page, D.C. (2004). An X-to-autosome retrogene is required for spermatogenesis in mice. Nat. Genet. 36, 872–876.10.1038/ng1390Search in Google Scholar

Butt, A.J., Firth, S.M., King, M.A., and Baxter, R.C. (2000). Insulin-like growth factor-binding protein-3 modulates expression of Bax and Bcl-2 and potentiates p53-independent radiation-induced apoptosis in human breast cancer cells. J. Biol. Chem. 275, 39174–39181.10.1074/jbc.M908888199Search in Google Scholar

Chinnaiyan, A.M. (1999). The apoptosome: heart and soul of the cell death machine. Neoplasia 1, 5–15.10.1038/sj.neo.7900003Search in Google Scholar

Deveraux, Q.L., Stennicke, H.R., Salvesen, G.S., and Reed, J.C. (1999). Endogenous inhibitors of caspases. J. Clin. Immunol. 19, 388–398.10.1023/A:1020502800208Search in Google Scholar

Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.10.1016/S0092-8674(00)00008-8Search in Google Scholar

Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516.10.1080/01926230701320337Search in Google Scholar PubMed PubMed Central

Farber, S., D’Angio, G., Evans, A., and Mitus, A. (1960). Clinical studies on actinomycin D with special reference to Wilms’ tumor in children. Ann. NY Acad. Sci. 89. 421–425.10.1111/j.1749-6632.1960.tb20165.xSearch in Google Scholar

Fazel, M., Mehnati, P., Baradaran, B., and Pirayesh, J. (2016). Evaluation of γ radiation-induced cytotoxicity of breast cancer cells: is there a time-dependent dose with high efficiency? Ind. J. Cancer 53, 25–28.10.4103/0019-509X.180862Search in Google Scholar

Fuchs, Y. and Steller, H. (2011). Programmed cell death in animal development and disease. Cell 147, 742–758.10.1016/j.cell.2011.10.033Search in Google Scholar

Fulda, S. (2009). Tumor resistance to apoptosis. Int. J. Cancer 124, 511–515.10.1002/ijc.24064Search in Google Scholar

Grassilli, E., Narloch, R., Federzoni, E., Ianzano, L., Pisano, F., Giovannoni, R., Romano, G., Masiero, L., Leone, B.E., Bonin, S., et al. (2013). Inhibition of GSK3B bypass drug resistance of p53-null colon carcinomas by enabling necroptosis in response to chemotherapy. Clin. Cancer Res. 19, 3820–3831.10.1158/1078-0432.CCR-12-3289Search in Google Scholar

Gross, A., Jockel, J., Wei, M.C., and Korsmeyer, S.J. (1998). Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17, 3878–3885.10.1093/emboj/17.14.3878Search in Google Scholar

Haupt, Y., Rowan, S., Shaulian, E., Vousden, K.H., and Oren, M. (1995). Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 9, 2170–2183.10.1101/gad.9.17.2170Search in Google Scholar

Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature 407, 770–776.10.1038/35037710Search in Google Scholar

Hortobagyi, G.N. (2000). Developments in chemotherapy of breast cancer. Cancer 88, 3073–3079.10.1002/1097-0142(20000615)88:12+<3073::AID-CNCR26>3.0.CO;2-RSearch in Google Scholar

Hu, L., Wang, J., Liu, Y., Zhang, Y., Zhang, L., Kong, R., Zheng, Z., Du, X., and Ke, Y. (2011). A small ribosomal subunit (SSU) processome component, the human U3 protein 14A (hUTP14A) binds p53 and promotes p53 degradation. J. Biol. Chem. 286, 3119–3128.10.1074/jbc.M110.157842Search in Google Scholar

Hu, Y., Cherton-Horvat, G., Dragowska, V., Baird, S., Korneluk, R.G., Durkin, J.P., Mayer, L.D., and LaCasse, E.C. (2003). Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin. Cancer Res. 9, 2826–2836.Search in Google Scholar

Huang, D.C. and Strasser, A. (2000) BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839–842.10.1016/S0092-8674(00)00187-2Search in Google Scholar

Kroemer, G., Zamzami, N., and Susin, S.A. (1997). Mitochondrial control of apoptosis. Immunol. Today 18, 44–51.10.1016/S0167-5699(97)80014-XSearch in Google Scholar

Locksley, R.M., Killeen, N., and Lenardo, M.J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501.10.1016/S0092-8674(01)00237-9Search in Google Scholar

Lorenzo, H.K., Susin, S.A., Penninger, J., and Kroemer, G. (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell. Death Differ. 6, 516–524.10.1038/sj.cdd.4400527Search in Google Scholar

Lowe, S.W. and Lin, A.W. (2000). Apoptosis in cancer. Carcinogenesis 21, 485–495.10.1093/carcin/21.3.485Search in Google Scholar

Meijerink, J.P., Mensink, E.J., Wang, K., Sedlak, T.W., Sloetjes, A.W., de Witte, T., Waksman, G., and Korsmeyer, S.J. (1998). Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91, 2991–2997.10.1182/blood.V91.8.2991.2991_2991_2997Search in Google Scholar

Miller, L.K. (1999). An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell. Biol. 9, 323–328.10.1016/S0962-8924(99)01609-8Search in Google Scholar

Mitchell, K.O., Ricci, M.S., Miyashita, T., Dicker, D.T., Jin, Z., Reed, J.C., and El-Deiry, W.S. (2000). Bax is a transcriptional target and mediator of c-myc-induced apoptosis. Cancer Res. 60, 6318–6325.Search in Google Scholar

Nachmias, B., Ashhab, Y., and Ben-Yehuda, D. (2004). The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin. Cancer Biol. 14, 231–243.10.1016/j.semcancer.2004.04.002Search in Google Scholar PubMed

O’Malley, B.W. and McGuire, W.L. (1968). Studies on the mechanism of estrogen-mediated tissue differentiation: regulation of nuclear transcription and induction of new RNA species. Proc. Natl. Acad. Sci. USA 60, 1527–1534.10.1073/pnas.60.4.1527Search in Google Scholar PubMed PubMed Central

Pastorino, J.G., Chen, S.T., Tafani, M., Snyder, J.W., and Farber, J.L. (1998). The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273, 7770–7775.10.1074/jbc.273.13.7770Search in Google Scholar PubMed

Pennati, M., Binda, M., De Cesare, M., Pratesi, G., Folini, M., Citti, L., Daidone, M.G., Zunino, F., and Zaffaroni, N. (2004). Ribozyme-mediated down-regulation of survivin expression sensitizes human melanoma cells to topotecan in vitro and in vivo. Carcinogenesis 25, 1129–1136.10.1093/carcin/bgh107Search in Google Scholar PubMed

Qin, J.Z., Stennett, L., Bacon, P., Bodner, B., Hendrix, M.J., Seftor, R.E., Seftor, E.A., Margaryan, N.V., Pollock, P.M., Curtis, A., et al. (2004). p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas. Mol. Cancer Ther. 3, 895–902.10.1158/1535-7163.895.3.8Search in Google Scholar

Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J.C., and Perucho, M. (1997). Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969.10.1126/science.275.5302.967Search in Google Scholar PubMed

Rohozinski, J., Anderson, M.L., Broaddus, R.E., Edwards, C.L., and Bishop, C.E. (2009). Spermatogenesis associated retrogenes are expressed in the human ovary and ovarian cancers. PLoS One 4, e5064.10.1371/journal.pone.0005064Search in Google Scholar PubMed PubMed Central

Rohozinski, J., Lamb, D.J., and Bishop, C.E. (2006). UTP14c is a recently acquired retrogene associated with spermatogenesis and fertility in man. Biol. Reprod. 74, 644–651.10.1095/biolreprod.105.046698Search in Google Scholar PubMed

Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin, K.M., Krammer, P.H., and Peter, M.E. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687.10.1093/emboj/17.6.1675Search in Google Scholar PubMed PubMed Central

Sdek, P., Ying, H., Chang, D.L., Qiu, W., Zheng, H., Touitou, R., Allday, M.J., and Xiao, Z.X. (2005). MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol. Cell. 20, 699–708.10.1016/j.molcel.2005.10.017Search in Google Scholar PubMed

Shetty, G., Shao, S.H., and Weng, C.C. (2008). p53-dependent apoptosis in the inhibition of spermatogonial differentiation in juvenile spermatogonial depletion (Utp14bjsd) mice. Endocrinology 149, 2773–2781.10.1210/en.2007-1338Search in Google Scholar PubMed PubMed Central

Takahashi, T., Fukawa, T., Hirayama, R., Yoshida, Y., Musha, A., Furusawa, Y., Ando, K., and Nakano, T. (2010). In vitro interaction of high-LET heavy-ion irradiation and chemotherapeutic agents in two cell lines with different radiosensitivities and different p53 status. Anticancer Res. 30, 1961–1967.Search in Google Scholar

Thompson, C.B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.10.1126/science.7878464Search in Google Scholar PubMed

Thornborrow, E.C., Patel, S., Mastropietro, A.E., Schwartzfarb, E.M., and Manfredi, J.J. (2002). A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 21, 990–999.10.1038/sj.onc.1205069Search in Google Scholar PubMed

Yu, F.L. (1980). Selective inhibition of rat liver nuclear RNA polymerase II by actinomycin D in vivo. Carcinogenesis 1, 577–581.10.1093/carcin/1.7.577Search in Google Scholar PubMed

Yu, J. and Zhang, L. (2008). PUMA, a potent killer with or without p53. Oncogene 27 (Suppl. 1), S71–S83.10.1038/onc.2009.45Search in Google Scholar

Zunina, F., Gambetta, R., and Di Marco, A. (1975). The inhibition in vitro of DNA polymerase and RNA polymerases by daunomycin and adriamycin. Biochem. Pharmacol. 24, 309–311.10.1016/0006-2952(75)90300-7Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: https://doi.org/10.1515/hsz-2017-0121) offers supplementary material.


Received: 2017-3-2
Accepted: 2017-6-21
Published Online: 2017-6-29
Published in Print: 2017-10-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2017-0121/html
Scroll to top button