Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 2, 2016

Comparison of the ability of mammalian eEF1A1 and its oncogenic variant eEF1A2 to interact with actin and calmodulin

  • Oleksandra Novosylna , Annette Doyle , Dmytro Vlasenko , Mark Murphy , Boris Negrutskii EMAIL logo and Anna El’skaya
From the journal Biological Chemistry

Abstract

The question as to why a protein exerts oncogenic properties is answered mainly by well-established ideas that these proteins interfere with cellular signaling pathways. However, the knowledge about structural and functional peculiarities of the oncoproteins causing these effects is far from comprehensive. The 97.5% homologous tissue-specific A1 and A2 isoforms of mammalian translation elongation factor eEF1A represent an interesting model to study a difference between protein variants of a family that differ in oncogenic potential. We propose that the different oncogenic impact of A1 and A2 might be explained by differences in their ability to communicate with their respective cellular partners. Here we probed this hypothesis by studying the interaction of eEF1A with two known partners – calmodulin and actin. Indeed, an inability of the A2 isoform to interact with calmodulin is shown, while calmodulin is capable of binding A1 and interferes with its tRNA-binding and actin-bundling activities in vitro. Both A1 and A2 variants revealed actin-bundling activity; however, the form of bundles formed in the presence of A1 or A2 was distinctly different. Thus, a potential inability of A2 to be controlled by Ca2+-mediated regulatory systems is revealed.

Acknowledgments

The authors are grateful to P. Futernyk for individual tRNA preparations, C.R. Knudsen for eEF1A1 domain constructs, S. Havrylenko for participation in initial experiments. We appreciate A. Horuzhenko’s contribution to the confocal microscopy studies. Research was supported in part by the Scientific program of NASU ‘Molecular and cell biotechnologies for medicine, industry and agriculture’ and GDRI Program ‘Human pathologies: from molecular to cellular level’.

References

Abagyan, R., Totrov, M., and Kuznetsov, D. (1994). ICM-A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. Comput. Chem. 15, 488–506.10.1002/jcc.540150503Search in Google Scholar

Abbas, W., Kumar, A., and Herbein, G. (2015). The eEF1A proteins: at the crossroads of oncogenesis, apoptosis, and viral infections. Front. Oncol. 5, 75.10.3389/fonc.2015.00075Search in Google Scholar

Alexander, P.A., He, Y., Chen, Y., Orban, J., and Bryan, P.N. (2007). The design and characterization of two proteins with 88% sequence identity but different structure and function. Proc. Natl. Acad. Sci. USA 104, 11963–11968.10.1073/pnas.0700922104Search in Google Scholar

Alexander, P.A., He, Y., Chen, Y., Orban, J., and Bryan, P.N. (2009). A minimal sequence code for switching protein structure and function. Proc. Natl. Acad. Sci. USA 106, 21149–21154.10.1073/pnas.0906408106Search in Google Scholar

Amiri, A., Noei, F., Jeganathan, S., Kulkarni, G., Pinke, D.E., and Lee, J.M. (2007). eEF1A2 activates Akt and stimulates Akt-dependent actin remodeling, invasion and migration. Oncogene 26, 3027–3040.10.1038/sj.onc.1210101Search in Google Scholar

Anand, N., Murthy, S., Amann, G., Wernick, M., Porter, L.A., Cukier, I.H., Collins, C., Gray, J.W., Diebold, J., Demetrick, D.J., et al. (2002). Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat. Genet. 31, 301–305.10.1038/ng904Search in Google Scholar

Andersen, G.R., Pedersen, L., Valente, L., Chatterjee, I., Kinzy, T.G., Kjeldgaard, M., and Nyborg, J. (2000). Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Bα. Mol. Cell 6, 1261–1266.10.1016/S1097-2765(00)00122-2Search in Google Scholar

Bai, S.W., Herrera-Abreu, M.T., Rohn, J.L., Racine, V., Tajadura, V., Suryavanshi, N., Bechtel, S., Wiemann, S., Baum, B., and Ridley, A.J. (2011). Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol. 9, 54.10.1186/1741-7007-9-54Search in Google Scholar PubMed PubMed Central

Budkevich, T.V., Timchenko, A.A., Tiktopulo, E.I., Negrutskii, B.S., Shalak, V.F., Petrushenko, Z.M., Aksenov, V.L., Willumeit, R., Kohlbrecher, J., Serdyuk, I.N., et al. (2002). Extended conformation of mammalian translation elongation factor 1A in solution. Biochemistry 41, 15342–15349.10.1021/bi026495hSearch in Google Scholar PubMed

Bunai, F., Ando, K., Ueno, H., and Numata, O. (2006). Tetrahymena eukaryotic translation elongation factor 1A (eEF1A) bundles filamentous actin through dimer formation. J. Biochem. 140, 393–399.10.1093/jb/mvj169Search in Google Scholar PubMed

Cao, H., Zhu, Q., Huang, J., Li, B., Zhang, S., Yao, W., and Zhang, Y. (2009). Regulation and functional role of eEF1A2 in pancreatic carcinoma. Biochem. Biophys. Res. Commun. 380, 11–16.10.1016/j.bbrc.2008.12.171Search in Google Scholar PubMed

Crepin, T., Shalak, V.F., Yaremchuk, A.D., Vlasenko, D.O., McCarthy, A., Negrutskii, B.S., Tukalo, M.A., and El’skaya, A.V. (2014). Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes. Nucleic Acids Res. 42, 12939–12948.10.1093/nar/gku974Search in Google Scholar PubMed PubMed Central

de Wit, N.J.W., Burtscher, H.J., Weidle, U.H., Ruiter, D.J., and van Muijen, G.N.P. (2002). Differentially expressed genes identified in human melanoma cell lines with different metastatic behaviour using high density oligonucleotide arrays. Melanoma Res. 12, 57–69.10.1097/00008390-200202000-00009Search in Google Scholar PubMed

Doyle, A., Crosby, S.R., Burton, D.R., Lilley, F., and Murphy, M.F. (2011). Actin bundling and polymerisation properties of eukaryotic elongation factor 1α (eEF1A), histone H2A-H2B and lysozyme in vitro. J. Struct. Biol. 176, 370–378.10.1016/j.jsb.2011.09.004Search in Google Scholar PubMed

Durso, N.A. and Cyr, R.J. (1994). A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1α. Plant Cell 6, 893–905.Search in Google Scholar

Ejiri, S. (2002). Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Biosci. Biotechnol. Biochem. 66, 1–21.10.1271/bbb.66.1Search in Google Scholar PubMed

El’skaya, A.V., Negrutskii, B.S., Shalak, V.F., Vislovukh, A.A., Vlasenko, D.O., Novosylna, A.V., Lukash, T.O., and Veremieva, M.V. (2013). Specific features of protein biosynthesis in higher eukaryotes. Biopolym. Cell. 29, 177–187.10.7124/bc.000818Search in Google Scholar

Fife, C.M., McCarroll, J.A., and Kavallaris, M. (2014). Movers and shakers: cell cytoskeleton in cancer metastasis. Br. J. Pharmacol. 171, 5507–5523.10.1111/bph.12704Search in Google Scholar PubMed PubMed Central

Fu, W., Sun, J., Huang, G., Liu, J.C., Kaufman, A., Ryan, R.J.H., Ramanathan, S.Y., Venkatesh, T., and Singh, B. (2016). Squamous cell carcinoma-related oncogene (SCCRO) family members regulate cell growth and proliferation through their cooperative and antagonistic effects on cullin neddylation. J. Biol. Chem. 291, 6200–6217.10.1074/jbc.M115.692756Search in Google Scholar PubMed PubMed Central

Fujimoto, H. and Mabuchi, I. (2010). Elongation factors are involved in cytokinesis of sea urchin eggs. Genes Cells 15, 123–135.10.1111/j.1365-2443.2009.01370.xSearch in Google Scholar PubMed

Gross, S.R. and Kinzy, T.G. (2005). Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat. Struct. Mol. Biol. 12, 772–778.10.1038/nsmb979Search in Google Scholar PubMed

Guo, X., Wang, L., Li, J., Ding, Z., Xiao, J., Yin, X., He, S., Shi, P., Dong, L., Li, G., et al. (2015). Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517, 640–644.10.1038/nature13899Search in Google Scholar

Hashimoto, Y., Parsons, M., and Adams, J.C. (2007). Dual actin-bundling and protein kinase C-binding activities of fascin regulate carcinoma cell migration downstream of Rac and contribute to metastasis. Mol. Biol. Cell 18, 4591–4602.10.1091/mbc.e07-02-0157Search in Google Scholar

Huang, G., Stock, C., Bommelje, C.C., Weeda, V.B., Shah, K., Bains, S., Buss, E., Shaha, M., Rechler, W., Ramanathan, S.Y., et al. (2014). SCCRO3 (DCUN1D3) antagonizes the neddylation and oncogenic activity of SCCRO (DCUN1D1). J. Biol. Chem. 289, 34728–34742.10.1074/jbc.M114.585505Search in Google Scholar

Jacobsen, K.T., Adlerz, L., Multhaup, G., and Iverfeldt, K. (2010). Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-beta precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J. Biol. Chem. 285, 10223–10231.10.1074/jbc.M109.038224Search in Google Scholar

Kanibolotsky, D.S., Novosyl’na, O.V., Abbott, C.M., Negrutskii, B.S., and El’skaya, A.V. (2008). Multiple molecular dynamics simulation of the isoforms of human translation elongation factor 1A reveals reversible fluctuations between “open” and “closed” conformations and suggests specific for eEF1A1 affinity for Ca2+-calmodulin. BMC Struct. Biol. 8, 4.10.1186/1472-6807-8-4Search in Google Scholar

Kaur, K.J. and Ruben, L. (1994). Protein translation elongation factor-1α from Trypanosoma brucei binds calmodulin. J. Biol. Chem. 269, 23045–23050.10.1016/S0021-9258(17)31617-4Search in Google Scholar

Kawamura, M., Endo, C., Sakurada, A., Hoshi, F., Notsuda, H., and Kondo, T. (2014). The prognostic significance of eukaryotic elongation factor 1 α-2 in non-small cell lung cancer. Anticancer Res. 34, 651–658.Search in Google Scholar

Khan, D.H., He, S., Yu, J., Winter, S., Cao, W., Seiser, C., and Davie, J.R. (2013). Protein kinase CK2 regulates the dimerization of histone deacetylase 1 (HDAC1) and HDAC2 during mitosis. J. Biol. Chem. 288, 16518–16528.10.1074/jbc.M112.440446Search in Google Scholar PubMed PubMed Central

Kim, Y., Roh, S., Park, J.-Y., Kim, Y., Cho, D.H., and Kim, J.C. (2009). Differential expression of the LOX family genes in human colorectal adenocarcinomas. Oncol. Rep. 22, 799–804.10.3892/or_00000502Search in Google Scholar PubMed

Knudsen, S.M., Frydenberg, J., Clark, B.F., and Leffers, H. (1993). Tissue-dependent variation in the expression of elongation factor-1α isoforms: isolation and characterisation of a cDNA encoding a novel variant of human elongation-factor 1α. Eur. J. Biochem. 215, 549–554.10.1111/j.1432-1033.1993.tb18064.xSearch in Google Scholar PubMed

Kurasawa, Y., Hanyu, K., Watanabe, Y., and Numata, O. (1996). F-actin bundling activity of Tetrahymena elongation factor 1α is regulated by Ca2+/calmodulin. J. Biochem. 119, 791–798.10.1093/oxfordjournals.jbchem.a021309Search in Google Scholar PubMed

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.10.1038/227680a0Search in Google Scholar

Lamberti, A., Caraglia, M., Longo, O., Marra, M., Abbruzzese, A., and Arcari, P. (2004). The translation elongation factor 1A in tumorigenesis, signal transduction and apoptosis: review article. Amino Acids 26, 443–448.10.1007/s00726-004-0088-2Search in Google Scholar

Lau, A.W., Fukushima, H., and Wei, W. (2012). The Fbw7 and βTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front. Biosci. (Landmark Ed.), 17, 2197–2212.10.2741/4045Search in Google Scholar

Lee, J.M. (2003). The role of protein elongation factor eEF1A2 in ovarian cancer. Reprod. Biol. Endocrinol. 1, 69.10.1186/1477-7827-1-69Search in Google Scholar

Lee, M.-H. and Surh, Y.-J. (2009). eEF1A2 as a putative oncogene. Ann. N.Y. Acad. Sci. 1171, 87–93.10.1111/j.1749-6632.2009.04909.xSearch in Google Scholar

Lee, S., Wolfraim, L.A., and Wang, E. (1993). Differential expression of S1 and elongation factor-1α during rat development. J. Biol. Chem. 268, 24453–24459.10.1016/S0021-9258(20)80547-XSearch in Google Scholar

Li, R., Wang, H., Bekele, B.N., Yin, Z., Caraway, N.P., Katz, R.L., Stass, S.A., and Jiang, F. (2006). Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene 25, 2628–2635.10.1038/sj.onc.1209289Search in Google Scholar PubMed

Lukash, T.O., Turkivska, H.V., Negrutskii, B.S., and El’skaya, A.V. (2004). Chaperone-like activity of mammalian elongation factor eEF1A: renaturation of aminoacyl-tRNA synthetases. J. Biochem. Cell Biol. 36, 1341–1347.10.1016/j.biocel.2003.11.009Search in Google Scholar PubMed

Migliaccio, N., Ruggiero, I., Martucci, N.M., Sanges, C., Arbucci, S., Tate, R., Rippa, E., Arcari, P., and Lamberti, A. (2015). New insights on the interaction between the isoforms 1 and 2 of human translation elongation factor 1A. Biochimie 118, 1–7.10.1016/j.biochi.2015.07.021Search in Google Scholar PubMed

Mohler, J.L., Morris, T.L., Ford, O.H. 3rd, Alvey, R.F., Sakamoto, C., and Gregory, C.W. (2002). Identification of differentially expressed genes associated with androgen-independent growth of prostate cancer. Prostate 51, 247–255.10.1002/pros.10086Search in Google Scholar PubMed

Moore, R.C., Durso, N.A., and Cyr, R.J. (1998). Elongation factor-1alpha stabilizes microtubules in a calcium/calmodulin-dependent manner. Cell Motil. Cytoskeleton 41, 168–180.10.1002/(SICI)1097-0169(1998)41:2<168::AID-CM7>3.0.CO;2-ASearch in Google Scholar

Morita, K., Bunai, F., and Numata, O. (2008). Roles of three domains of tetrahymena eEF1A in bundling F-actin. Zoolog. Sci. 25, 22–29.10.2108/zsj.25.22Search in Google Scholar

Mouneimne, G., Hansen, S.D., Selfors, L.M., Petrak, L., Hickey, M.M., Gallegos, L.L., Simpson, K.J., Lim, J., Gertler, F.B., Hartwig, J.H., et al. (2012). Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion. Cancer Cell 22, 615–630.10.1016/j.ccr.2012.09.027Search in Google Scholar

Negrutskii, B.S. and El’skaya, A.V. (1998). Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog. Nucleic Acid Res. Mol. Biol. 60, 47–78.10.1016/S0079-6603(08)60889-2Search in Google Scholar

Negrutskii, B., Vlasenko, D., and El’skaya, A. (2012). From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A. Expert Rev. Proteomics 9, 71–83.10.1586/epr.11.71Search in Google Scholar

Newbery, H.J., Loh, D.H., O’Donoghue, J.E., Tomlinson, V.A.L., Chau, Y.-Y., Boyd, J.A., Bergmann, J.H., Brownstein, D., and Abbott, C.M. (2007). Translation elongation factor eEF1A2 is essential for post-weaning survival in mice. J. Biol. Chem. 282, 28951–28959.10.1074/jbc.M703962200Search in Google Scholar

Nissen, P., Thirup, S., Kjeldgaard, M., and Nyborg, J. (1999). The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 7, 143–156.10.1016/S0969-2126(99)80021-5Search in Google Scholar

Novosylna, O.V., Timchenko, A.A., Tiktopulo, E.I., Serdyuk, I.N., Negrutskii, B.S., and El’skaya, A.V. (2007). Characterization of physical properties of two isoforms of translation elongation factor 1A. Biopolym. Cell 23, 386–390.10.7124/bc.000777Search in Google Scholar

Novosylna, O., Jurewicz, E., Pydiura, N., Goral, A., Filipek, A., Negrutskii, B., and El’skaya, A. (2015). Translation elongation factor eEF1A1 is a novel partner of a multifunctional protein Sgt1. Biochimie 119, 137–145.10.1016/j.biochi.2015.10.026Search in Google Scholar

Palmer, S.R., Crowley, P.J., Oli, M.W., Ruelf, M.A., Michalek, S.M., and Brady, L.J. (2012). YidC1 and YidC2 are functionally distinct proteins involved in protein secretion, biofilm formation and cariogenicity of Streptococcus mutans. Microbiology 158, 1702–1712.10.1099/mic.0.059139-0Search in Google Scholar

Panasyuk, G., Nemazanyy, I., Filonenko, V., Negrutskii, B., and El’skaya, A.V. (2008). A2 isoform of mammalian translation factor eEF1A displays increased tyrosine phosphorylation and ability to interact with different signalling molecules. J. Biochem. Cell Biol. 40, 63–71.10.1016/j.biocel.2007.08.014Search in Google Scholar PubMed PubMed Central

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.10.1002/jcc.20084Search in Google Scholar PubMed

Rao, J. and Li, N. (2004). Microfilament actin remodeling as a potential target for cancer drug development. Curr. Cancer Drug Targets 4, 345–354.10.2174/1568009043332998Search in Google Scholar PubMed

Sali, A. and Blundell, T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.10.1006/jmbi.1993.1626Search in Google Scholar PubMed

Samyesudhas, S.J., Roy, L., and Cowden Dahl, K.D. (2014). Differential expression of ARID3B in normal adult tissue and carcinomas. Gene 543, 174–180.10.1016/j.gene.2014.04.007Search in Google Scholar PubMed

Sasikumar, A.N., Perez, W.B., and Kinzy, T.G. (2012). The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip. Rev. RNA 3, 543–555.10.1002/wrna.1118Search in Google Scholar PubMed PubMed Central

Scaggiante, B. and Bosutti, A. (2015). EEF1A1 (eukaryotic translation elongation factor 1 alpha 1). Atlas Genet. Cytogenet. Oncol. Haematol. 19, 256–265.Search in Google Scholar

Sengprasert, P., Amparyup, P., Tassanakajorn, A., and Wongpanya, R. (2015). Characterization and identification of calmodulin and calmodulin binding proteins in hemocyte of the black tiger shrimp (Penaeus monodon). Dev. Comp. Immunol. 50, 87–97.10.1016/j.dci.2015.02.003Search in Google Scholar PubMed

Shalak, V.F., Budkevich, T.V., Negrutskil, B.S., and El’skaia, A.V. (1997). A fast and effective method for purification of elongation factor 1α from rabbit liver. Ukr. Biochem. J. 69, 104–109.Search in Google Scholar

Shiau, A.K., Harris, S.F., Southworth, D.R., and Agard, D.A. (2006). Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329–340.10.1016/j.cell.2006.09.027Search in Google Scholar PubMed

Sirianant, L., Ousingsawat, J., Tian, Y., Schreiber, R., and Kunzelmann, K. (2014). TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Cl- currents. Cell. Signal. 26, 2826–2833.10.1016/j.cellsig.2014.09.001Search in Google Scholar PubMed

Soares, D.C., Barlow, P.N., Newbery, H.J., Porteous, D.J., and Abbott, C.M. (2009). Structural models of human eEF1A1 and eEF1A2 reveal two distinct surface clusters of sequence variation and potential differences in phosphorylation. PLoS One 4, e6315.10.1371/journal.pone.0006315Search in Google Scholar PubMed PubMed Central

Stevenson, R.P., Veltman, D., and Machesky, L.M. (2012). Actin-bundling proteins in cancer progression at a glance. J. Cell Sci. 125, 1073–1079.10.1242/jcs.093799Search in Google Scholar PubMed

Sun, Y., Du, C., Wang, B., Zhang, Y., Liu, X., and Ren, G. (2014). Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer. Biochem. Biophys. Res. Commun. 450, 1–6.10.1016/j.bbrc.2014.05.045Search in Google Scholar PubMed

Timchenko, A.A., Novosylna, O.V., Prituzhalov, E.A., Kihara, H., El’skaya, A.V., Negrutskii, B.S., and Serdyuk, I.N. (2013). Different oligomeric properties and stability of highly homologous A1 and proto-oncogenic A2 variants of mammalian translation elongation factor eEF1. Biochemistry 52, 5345–5353.10.1021/bi400400rSearch in Google Scholar PubMed

Tomlinson, V.A.L., Newbery, H.J., Wray, N.R., Jackson, J., Larionov, A., Miller, W.R., Dixon, J.M., and Abbott, C.M. (2005). Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours. BMC Cancer. 5, 113.10.1186/1471-2407-5-113Search in Google Scholar PubMed PubMed Central

Tossidou, I., Niedenthal, R., Klaus, M., Teng, B., Worthmann, K., King, B.L., Peterson, K.J., Haller, H., and Schiffer, M. (2012). CD2AP regulates SUMOylation of CIN85 in podocytes. Mol. Cell. Biol. 32, 1068–1079.10.1128/MCB.06106-11Search in Google Scholar PubMed PubMed Central

Vislovukh, A., Kratassiouk, G., Porto, E., Gralievska, N., Beldiman, C., Pinna, G., El’skaya, A., Harel-Bellan, A., Negrutskii, B., and Groisman, I. (2013). Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744. Br. J. Cancer 108, 2304–11.10.1038/bjc.2013.243Search in Google Scholar PubMed PubMed Central

Vlasenko, D.O., Novosylna, O.V., Negrutskii, B.S., and Anna, V. (2015). Truncation of the A, A∗, A′ helices segment impairs the actin bundling activity of mammalian eEF1A1. FEBS Lett. 589, 1187–1193.10.1016/j.febslet.2015.03.030Search in Google Scholar PubMed

Wanitchakool, P., Wolf, L., Koehl, G.E., Sirianant, L., Schreiber, R., Kulkarni, S., Duvvuri, U., and Kunzelmann, K. (2014). Role of anoctamins in cancer and apoptosis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130096.10.1098/rstb.2013.0096Search in Google Scholar PubMed PubMed Central

Werner, A., Iwasaki, S., McGourty, C.A., Medina-Ruiz, S., Teerikorpi, N., Fedrigo, I., Ingolia, N.T., and Rape, M. (2015). Cell-fate determination by ubiquitin-dependent regulation of translation. Natur 525, 523–527.10.1038/nature14978Search in Google Scholar PubMed PubMed Central

Xie, D., Jauch, A., Miller, C.W., Bartram, C.R., and Koeffler, H.P. (2002). Discovery of over-expressed genes and genetic alterations in breast cancer cells using a combination of suppression subtractive hybridization, multiplex FISH and comparative genomic hybridization. Int. J. Oncol. 21, 499–507.10.3892/ijo.21.3.499Search in Google Scholar

Xu, C., Hu, D., and Zhu, Q. (2013). eEF1A2 promotes cell migration, invasion and metastasis in pancreatic cancer by upregulating MMP-9 expression through Akt activation. Clin. Exp. Metastasis 30, 933–944.10.1007/s10585-013-9593-6Search in Google Scholar PubMed

Yang, S., Lu, M., Chen, Y., Meng, D., Sun, R., Yun, D., Zhao, Z., Lu, D., and Li, Y. (2015). Overexpression of eukaryotic elongation factor 1 alpha-2 is associated with poorer prognosis in patients with gastric cancer. J. Cancer Res. Clin. Oncol. 141, 1265–1275.10.1007/s00432-014-1897-7Search in Google Scholar PubMed

Yap, K.L., Kim, J., Truong, K., Sherman, M., Yuan, T., and Ikura, M. (2000). Calmodulin target database. J. Struct. Funct. Genomics. 1, 8–14.10.1023/A:1011320027914Search in Google Scholar

Yaremchuk, A., Shalak, V.F., Novosylna, O.V., Negrutskii, B.S., Crepin, T., El’skaya, A.V., and Tukalo, M. (2012). Purification, crystallization and preliminary X-ray crystallographic analysis of mammalian translation elongation factor eEF1A2. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68, 295–297.10.1107/S1744309112000243Search in Google Scholar PubMed PubMed Central

Zhu, H., Lam, D.C.L., Han, K.C., Tin, V.P.C., Suen, W.S., Wang, E., Lam, W.K., Cai, W.W., Chung, L.P., and Wong, M.P. (2007). High resolution analysis of genomic aberrations by metaphase and array comparative genomic hybridization identifies candidate tumour genes in lung cancer cell lines. Cancer Lett. 245, 303–314.10.1016/j.canlet.2006.01.020Search in Google Scholar PubMed


Supplemental Material:

The online version of this article (DOI: 10.1515/hsz-2016-0172) offers supplementary material, available to authorized users.


Received: 2016-4-13
Accepted: 2016-7-26
Published Online: 2016-8-2
Published in Print: 2017-1-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2016-0172/html
Scroll to top button