Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 10, 2013

Septin 9 amplification and isoform-specific expression in peritumoral and tumor breast tissue

  • Diana Connolly , Hien G. Hoang , Esther Adler , Cagdas Tazearslan , Nichelle Simmons , Vahni Vishala Bernard , Maria Castaldi , Maja H. Oktay and Cristina Montagna EMAIL logo
From the journal Biological Chemistry

Abstract

Septins are a large family of GTP-binding proteins abnormally expressed in many solid tumors. Septin 9 (SEPT9) in particular has been found overexpressed in diverse human tumors including breast, head and neck, ovarian, endometrial, kidney, and pancreatic cancer. Although we previously reported SEPT9 amplification in breast cancer, we now show specifically that high-grade breast carcinomas, the subtype with worst clinical outcome, exhibit a significant increase in SEPT9 copy number when compared with other tumor grades. We also present, for the first time, a sensitive and quantitative measure of seven (SEPT9_v1 through SEPT9_v7) isoform variant mRNA levels in mammary epithelial cells. SEPT9_v1, SEPT9_v3, SEPT9_v6, and SEPT9_v7 isoforms were expressed at the highest levels followed by SEPT9_v2 and SEPT9_v5, whereas SEPT9_v4 was almost undetectable. Although most of the isoforms were upregulated in primary tumor tissues relative to the patient-matched peritumoral tissues, SEPT9_v4 remained the lowest expressing isoform. This comprehensive analysis of SEPT9 provides substantial evidence for increased SEPT9 expression as a consequence of genomic amplification and is the first study to profile SEPT9_v1 through SEPT9_v7 isoform-specific mRNA expression in tumor and nontumor tissues from patients with breast cancer.


Corresponding author: Cristina Montagna, Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, 1301 Morris Park Avenue, Bronx, NY 10461, USA; and Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, 1301 Morris Park Avenue, Bronx, NY 10461, USA, e-mail:

We thank the Shared Resources at Albert Einstein College of Medicine: Molecular Cytogenetic, in particular, Dr. Jidong Shan and Dr. Yinghui Song for help with the FISH analysis. The work of the authors was supported by grants from the ACS (ACS RSG-11-021-01-CNE to C.M.); C.M. is supported by the CCSG P30CA013330.

References

Amir, S. and Mabjeesh, N.J. (2007). SEPT9_V1 protein expression is associated with human cancer cell resistance to microtubule-disrupting agents. Cancer Biol. Ther. 6, 1926–1931.10.4161/cbt.6.12.4971Search in Google Scholar PubMed

Amir, S., Golan, M., and Mabjeesh, N.J. (2010). Targeted knockdown of SEPT9_v1 inhibits tumor growth and angiogenesis of human prostate cancer cells concomitant with disruption of hypoxia-inducible factor-1 pathway. Mol. Cancer Res. 8, 643–652.10.1158/1541-7786.MCR-09-0497Search in Google Scholar PubMed

Burrows, J.F., Chanduloy, S., McIlhatton, M.A., Nagar, H., Yeates, K., Donaghy, P., Price, J., Godwin, A.K., Johnston, P.G., and Russell, S.E. (2003). Altered expression of the septin gene, SEPT9, in ovarian neoplasia. J. Pathol. 201, 581–588.10.1002/path.1484Search in Google Scholar PubMed

Cancer Genome Atlas Network. (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70.10.1038/nature11412Search in Google Scholar PubMed PubMed Central

Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404.10.1158/2159-8290.CD-12-0095Search in Google Scholar PubMed PubMed Central

Cerveira, N., Bizarro, S., and Teixeira, M.R. (2011). MLL-SEPTIN gene fusions in hematological malignancies. Biol. Chem. 392, 713–724.10.1515/BC.2011.072Search in Google Scholar PubMed

Chacko, A.D., Hyland, P.L., McDade, S.S., Hamilton, P.W., Russell, S.H., and Hall, P.A. (2005). SEPT9_v4 expression induces morphological change, increased motility and disturbed polarity. J. Pathol. 206, 458–465.10.1002/path.1794Search in Google Scholar PubMed

Chacko, A.D., McDade, S.S., Chanduloy, S., Church, S.W., Kennedy, R., Price, J., Hall, P.A., and Russell, S.E. (2012). Expression of the SEPT9_i4 isoform confers resistance to microtubule-interacting drugs. Cell. Oncol. 35, 85–93.10.1007/s13402-011-0066-0Search in Google Scholar PubMed

Connolly, D., Abdesselam, I., Verdier-Pinard, P., and Montagna, C. (2011a). Septin roles in tumorigenesis. Biol. Chem. 392, 725–738.10.1515/BC.2011.073Search in Google Scholar PubMed

Connolly, D., Yang, Z., Castaldi, M., Simmons, N., Oktay, M.H., Coniglio, S., Fazzari, M.J., Verdier-Pinard, P., and Montagna, C. (2011b). Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res. 13, R76.10.1186/bcr2924Search in Google Scholar PubMed PubMed Central

deVos, T., Tetzner, R., Model, F., Weiss, G., Schuster, M., Distler, J., Steiger, K.V., Grutzmann, R., Pilarsky, C., Habermann, J.K., et al. (2009). Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem. 55, 1337–1346.10.1373/clinchem.2008.115808Search in Google Scholar PubMed

Downing, T.E., Oktay, M.H., Fazzari, M.J., and Montagna, C. (2010). Prognostic and predictive value of 16p12.1 and 16q22.1 copy number changes in human breast cancer. Cancer Genet. Cytogenet. 198, 52–61.10.1016/j.cancergencyto.2009.12.007Search in Google Scholar PubMed

Estey, M.P., Di Ciano-Oliveira, C., Froese, C.D., Bejide, M.T., and Trimble, W.S. (2010). Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J. Cell. Biol. 191, 741–749.10.1083/jcb.201006031Search in Google Scholar PubMed PubMed Central

Fan, C., Oh, D.S., Wessels, L., Weigelt, B., Nuyten, D.S., Nobel, A.B., van’t Veer, L.J., and Perou, C.M. (2006). Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569.10.1056/NEJMoa052933Search in Google Scholar PubMed

Foulkes, W.D. (2008). Inherited susceptibility to common cancers. N. Engl. J. Med. 359, 2143–2153.10.1056/NEJMra0802968Search in Google Scholar PubMed

Fuchtbauer, A., Lassen, L.B., Jensen, A.B., Howard, J., Quiroga Ade, S., Warming, S., Sorensen, A.B., Pedersen, F.S., and Fuchtbauer, E.M. (2011). Septin9 is involved in septin filament formation and cellular stability. Biol. Chem. 392, 769–777.10.1515/BC.2011.088Search in Google Scholar PubMed

Golan, M. and Mabjeesh, N.J. (2013). SEPT9_i1 is required for the association between HIF-1α and importin-α to promote efficient nuclear translocation. Cell Cycle 12 (Epub ahead of print).10.4161/cc.25379Search in Google Scholar PubMed PubMed Central

Gonzalez, M.E., Peterson, E.A., Privette, L.M., Loffreda-Wren, J.L., Kalikin, L.M., and Petty, E.M. (2007). High SEPT9_v1 expression in human breast cancer cells is associated with oncogenic phenotypes. Cancer Res. 67, 8554–8564.10.1158/0008-5472.CAN-07-1474Search in Google Scholar PubMed

Gonzalez, M.E., Makarova, O., Peterson, E.A., Privette, L.M., and Petty, E.M. (2009). Up-regulation of SEPT9_v1 stabilizes c-Jun-N-terminal kinase and contributes to its pro-proliferative activity in mammary epithelial cells. Cell. Signal. 21, 477–487.10.1016/j.cellsig.2008.11.007Search in Google Scholar PubMed PubMed Central

Grutzmann, R., Molnar, B., Pilarsky, C., Habermann, J.K., Schlag, P.M., Saeger, H.D., Miehlke, S., Stolz, T., Model, F., Roblick, U.J., et al. (2008). Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 3, e3759.10.1371/journal.pone.0003759Search in Google Scholar PubMed PubMed Central

Hall, P.A. and Russell, S.E. (2004). The pathobiology of the septin gene family. J. Pathol. 204, 489–505.10.1002/path.1654Search in Google Scholar PubMed

Hall, P.A. and Russell, S.E. (2012). Mammalian septins: dynamic heteromers with roles in cellular morphogenesis and compartmentalization. J. Pathol. 226, 287–299.10.1002/path.3024Search in Google Scholar PubMed

Hall, P.A., Russell, S.E.H., and Pringle, J.R. (2008). The Septins (Wiley).10.1002/9780470779705Search in Google Scholar

Kavallaris, M. (2010). Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 10, 194–204.10.1038/nrc2803Search in Google Scholar PubMed

Kuhlenbaumer, G., Hannibal, M.C., Nelis, E., Schirmacher, A., Verpoorten, N., Meuleman, J., Watts, G.D., De Vriendt, E., Young, P., Stogbauer, F., et al. (2005). Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nat. Genet. 37, 1044–1046.10.1038/ng1649Search in Google Scholar PubMed

Landsverk, M.L., Ruzzo, E.K., Mefford, H.C., Buysse, K., Buchan, J.G., Eichler, E.E., Petty, E.M., Peterson, E.A., Knutzen, D.M., Barnett, K., et al. (2009). Duplication within the SEPT9 gene associated with a founder effect in North American families with hereditary neuralgic amyotrophy. Hum. Mol. Genet. 18, 1200–1208.10.1093/hmg/ddp014Search in Google Scholar PubMed PubMed Central

Lofton-Day, C., Model, F., Devos, T., Tetzner, R., Distler, J., Schuster, M., Song, X., Lesche, R., Liebenberg, V., Ebert, M., et al. (2008). DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 54, 414–423.10.1373/clinchem.2007.095992Search in Google Scholar PubMed

McDade, S.S., Hall, P.A., and Russell, S.E. (2007). Translational control of SEPT9 isoforms is perturbed in disease. Hum. Mol. Genet. 16, 742–752.10.1093/hmg/ddm003Search in Google Scholar PubMed

McIlhatton, M.A., Burrows, J.F., Donaghy, P.G., Chanduloy, S., Johnston, P.G., and Russell, S.E. (2001). Genomic organization, complex splicing pattern and expression of a human septin gene on chromosome 17q25.3. Oncogene 20, 5930–5939.10.1038/sj.onc.1204752Search in Google Scholar PubMed

Montagna, C., Lyu, M.S., Hunter, K., Lukes, L., Lowther, W., Reppert, T., Hissong, B., Weaver, Z., and Ried, T. (2003a). The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res. 63, 2179–2187.Search in Google Scholar

Montagna, C., Lyu, M.S., Hunter, K., Lukes, L., Lowther, W., Reppert, T., Hissong, B., Weaver, Z., and Ried, T. (2003b). The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res. 63, 2179–2187.Search in Google Scholar

Mostowy, S. and Cossart, P. (2012). Septins: the fourth component of the cytoskeleton. Nat. Rev. Mol. Cell. Biol. 13, 183–194.10.1038/nrm3284Search in Google Scholar PubMed

Nagata, K., Kawajiri, A., Matsui, S., Takagishi, M., Shiromizu, T., Saitoh, N., Izawa, I., Kiyono, T., Itoh, T.J., Hotani, H., et al. (2003). Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J. Biol. Chem. 278, 18538–18543.10.1074/jbc.M205246200Search in Google Scholar PubMed

Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000). Molecular portraits of human breast tumours. Nature 406, 747–752.10.1038/35021093Search in Google Scholar PubMed

Peterson, E.A., Stanbery, L., Li, C., Kocak, H., Makarova, O., and Petty, E.M. (2011). SEPT9_i1 and genomic instability: mechanistic insights and relevance to tumorigenesis. Genes Chromosomes Cancer 50, 940–949.10.1002/gcc.20916Search in Google Scholar PubMed PubMed Central

Prat, A., Parker, J.S., Karginova, O., Fan, C., Livasy, C., Herschkowitz, J.I., He, X., and Perou, C.M. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68.10.1186/bcr2635Search in Google Scholar PubMed PubMed Central

Scott, M., Hyland, P.L., McGregor, G., Hillan, K.J., Russell, S.E., and Hall, P.A. (2005). Multimodality expression profiling shows SEPT9 to be overexpressed in a wide range of human tumours. Oncogene 24, 4688–4700.10.1038/sj.onc.1208574Search in Google Scholar PubMed

Scott, M., McCluggage, W.G., Hillan, K.J., Hall, P.A., and Russell, S.E. (2006). Altered patterns of transcription of the septin gene, SEPT9, in ovarian tumorigenesis. Int. J. Cancer 118, 1325–1329.10.1002/ijc.21486Search in Google Scholar PubMed

Sorlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874.10.1073/pnas.191367098Search in Google Scholar PubMed PubMed Central

Stanbery, L., D’Silva, N.J., Lee, J.S., Bradford, C.R., Carey, T.E., Prince, M.E., Wolf, G.T., Worden, F.P., Cordell, K.G., and Petty, E.M. (2010). High SEPT9_v1 expression is associated with poor clinical outcomes in head and neck squamous cell carcinoma. Transl. Oncol. 3, 239–245.10.1593/tlo.10109Search in Google Scholar PubMed PubMed Central

Sudo, K., Ito, H., Iwamoto, I., Morishita, R., Asano, T., and Nagata, K. (2007). SEPT9 sequence alternations causing hereditary neuralgic amyotrophy are associated with altered interactions with SEPT4/SEPT11 and resistance to Rho/Rhotekin-signaling. Hum. Mutat. 28, 1005–1013.10.1002/humu.20554Search in Google Scholar PubMed

Surka, M.C., Tsang, C.W., and Trimble, W.S. (2002). The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol. Biol. Cell 13, 3532–3545.10.1091/mbc.e02-01-0042Search in Google Scholar PubMed PubMed Central

The Ensembl project. Available at: ensembl.org.Search in Google Scholar

Received: 2013-08-30
Accepted: 2013-10-09
Published Online: 2013-10-10
Published in Print: 2014-02-01

©2014 by Walter de Gruyter Berlin Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0247/html
Scroll to top button