Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 13, 2017

Antioxidant activity of Scots pine heartwood and knot extractives and implications for resistance to brown rot

  • Tiina Belt EMAIL logo , Tuomas Hänninen and Lauri Rautkari
From the journal Holzforschung

Abstract

Brown rot (BR) fungi are highly destructive wood decaying organisms that utilise free radicals in the initial stages of decay. Although many wood extractives have been shown to have antioxidant (AO) activity, their ability to protect wood from radical-based degradation has received little attention. The present paper reports on the ability of Scots pine heartwood (hW) and knotwood (knW) extractives to inhibit radical-based degradation, with a focus on the Fenton reaction. AO assays showed that extract solutions and pure pinosylvins had good radical scavenging activity and weak to moderate ferrous iron binding and ferric iron reducing activities. AO assays were repeated with wood powders and showed that extractives were also active in wood: hW and knW had significantly higher activities than their extracted counterparts or sapwood. However, when wood powders were subjected to degradation by Fenton reagent, only knW showed reduced mass loss. Based on the activity profiles of knW and hW, it appears that the radical scavenging activity of pine extractives is more important than their interaction with iron. The results suggest that the AO activity of extractives may play a role in inhibiting BR, but its importance relative to the other biological activities of extractives is unknown.

References

Andjelković, M., Van Camp, J., De Meulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., Verhe, R. (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 98:23–31.10.1016/j.foodchem.2005.05.044Search in Google Scholar

Apetrei, C.L., Tuchilus, C., Aprotosoaie, A.C., Oprea, A., Malterud, K.E., Miron, A. (2011) Chemical, antioxidant and antimicrobial investigations of Pinus cembra L. bark and needles. Molecules 16:7773–7788.10.3390/molecules16097773Search in Google Scholar PubMed PubMed Central

Arantes, V., Jellison, J., Goodell, B. (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl. Microbiol. Biot. 94:323–338.10.1007/s00253-012-3954-ySearch in Google Scholar PubMed

Balasundram, N., Sundram, K., Samman, S. (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99:191–203.10.1016/j.foodchem.2005.07.042Search in Google Scholar

Baldrian, P., Valásková, V. (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32:501–521.10.1111/j.1574-6976.2008.00106.xSearch in Google Scholar PubMed

Barclay, L.R.C., Xi, F., Norris, J.Q. (1997) Antioxidant properties of phenolic lignin model compounds. J. Wood Chem. Technol. 17:73–90.10.1080/02773819708003119Search in Google Scholar

Boeriu, C.G., Bravo, D., Gosselink, R.J.A., van Dam, J.E.G. (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crop. Prod. 20:205–218.10.1016/j.indcrop.2004.04.022Search in Google Scholar

Cheng, I.F., Breen, K. (2000) On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex. Biometals 13:77–83.10.1023/A:1009229429250Search in Google Scholar

Dinis, T.C.P., Madeira, V.M.C., Almeida, L.M. (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315:161–169.10.1006/abbi.1994.1485Search in Google Scholar PubMed

Dizhbite, T., Telysheva, G., Jurkjane, V., Viesturs, U. (2004) Characterization of the radical scavenging activity of lignins – natural antioxidants. Bioresource Technol. 95:309–317.10.1016/j.biortech.2004.02.024Search in Google Scholar PubMed

Donoso-Fierro, C., Becerra, J., Bustos-Concha, E., Silva, M. (2006) Chelating and antioxidant activity of lignans from Chilean woods (Cupressaceae). Holzforschung 63:559–563.10.1515/HF.2009.123Search in Google Scholar

Ekeberg, D., Flæte, P.-O., Eikenes, M., Fongen, M., Naess-Andresen. C. F. (2006) Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 1109:267–272.10.1016/j.chroma.2006.01.027Search in Google Scholar

Eklund, P.C., Långvik, O.K., Wärnå, J.P., Salmi, T.O., Willför, S.M., Sjöholm, R.E. (2005) Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Org. Biomol. Chem. 3:3336–3347.10.1039/b506739aSearch in Google Scholar

Fang, W., Hemming, J., Reunanen, M., Eklund, P., Conde Pineiro, E., Poljanšek, I., Oven, P., Willför, S. (2013) Evaluation of selective extraction methods for recovery of polyphenols from pine. Holzforschung 67:843–851.10.1515/hf-2013-0002Search in Google Scholar

Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B., Martínez, A.T., Otillar, R., Spatafora, J.W., Yadav J.S., Aerts, A. (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719.10.1126/science.1221748Search in Google Scholar

Goodell, B., Qian, Y., Jellison, J., Richard, M., Qi, W. (2002) Lignocellulose oxidation by low molecular weight metal-binding compounds isolated from wood degrading fungi: A comparison of brown rot and white rot systems and the potential application of chelator-mediated Fenton reactions. In: Progress in Biotechnology 21, Biotechnology in the Pulp and Paper Industry. Eds. Viikari, L., Lantto, R. Elsevier, Amsterdam. pp. 37–47.10.1016/S0921-0423(02)80006-5Search in Google Scholar

Goodell, B., Daniel, G., Jellison, J., Qian, Y. (2006) Iron-reducing capacity of low-molecular-weight compounds produced in wood by fungi. Holzforschung 60:630–636.10.1515/HF.2006.106Search in Google Scholar

Guillon, E., Merdy, P., Aplincourt, M., Dumonceau, J., Vezin, H. (2001) Structural characterization and iron (III) binding ability of dimeric and polymeric lignin models. J. Colloid Interf. Sci. 239:39–48.10.1006/jcis.2001.7535Search in Google Scholar

Guo, M., Perez, C., Wei, Y., Rapoza, E., Su, G., Bou-Abdallah, F., Chasteen, N.D. (2009) Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans. 43: 4951–4961.10.1039/b705136kSearch in Google Scholar

Hammel, K.E., Kapich, A.N., Jensen, K.A. Jr, Ryan, Z.C. (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Tech. 30:445–453.10.1016/S0141-0229(02)00011-XSearch in Google Scholar

Hovelstad, H., Leirset, I., Oyaas, K., Fiksdahl, A. (2006) Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules 11:103–114.10.3390/11010103Search in Google Scholar PubMed PubMed Central

Jensen, K.A. Jr., Houtman, C.J., Ryan, Z.C., Hammel, K.E. (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microb. 67:2705–2711.10.1128/AEM.67.6.2705-2711.2001Search in Google Scholar

Kerem, Z., Jensen, K.A., Hammel, K.E. (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446:49–54.10.1016/S0014-5793(99)00180-5Search in Google Scholar

Kessler, M., Ubeaud, G., Jungt, L. (2003) Anti- and pro-oxidant activity of rutin and quercetin derivatives. J. Pharm. Pharmacol. 55:131–142.10.1211/002235702559Search in Google Scholar

Li, L., Abe, Y., Kanagawa, K., Shoji, T., Mashino, T., Mochizuki, M., Tanaka, M., Miyata, N. (2007) Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals. Anal. Chim. Acta. 599:315–319.10.1016/j.aca.2007.08.008Search in Google Scholar

Lopes, G.K.B., Schulman, H.M., Hermes-Lima, M. (1999) Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta 1472:142–152.10.1016/S0304-4165(99)00117-8Search in Google Scholar

Macáková, K., Mladěnka, P., Filipský, T., Říha, M., Jahodář, L., Trejtnar, F., Bovicelli, P., Silvestri, I.P., Hrdina, R., Saso, L. (2012) Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chem. 135:2584–2592.10.1016/j.foodchem.2012.06.107Search in Google Scholar PubMed

MacDonald-Wicks, L.K., Wood, L.G., Garg, M.L. (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J. Sci. Food. Agric. 86:2046–2056.10.1002/jsfa.2603Search in Google Scholar

Makino, R., Ohara, S., Hashida, K. (2011) Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin. Holzforschung 65:651–657.10.1515/hf.2011.086Search in Google Scholar

Mira, L., Fernandez, M.T., Santos, M., Rocha, R., Florêncio, M.H., Jennings, K.R. (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Res. 36:1199–1208.10.1080/1071576021000016463Search in Google Scholar PubMed

Mladěnka, P., Macáková, K., Filipský, T., Zatloukalová, L., Jahodář, L., Bovicelli, P., Silvestri, I.P., Hrdina, R., Saso, L. (2011) In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem. 105:693–701.10.1016/j.jinorgbio.2011.02.003Search in Google Scholar PubMed

Moran, J.F., Klucas, R.V., Grayer, R.J., Abian, J., Becan, M. (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radical Bio. Med. 22:861–870.10.1016/S0891-5849(96)00426-1Search in Google Scholar

Niki, E., Noguchi, N. (2000) Evaluation of antioxidant capacity. What capacity is being measured by which method? IUBMB Life 50:323–329.10.1080/15216540051081119Search in Google Scholar

Pietarinen, S.P., Willför, S.M., Ahotupa, M.O., Hemming, J.E., Holmbom, B.R. (2006) Knotwood and bark extracts: strong antioxidants from waste materials. J. Wood Sci. 52:436–444.10.1007/s10086-005-0780-1Search in Google Scholar

Pignatello, J.P., Oliveros, E., MacKay, A. (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36:1–84.10.1080/10643380500326564Search in Google Scholar

Piispanen, R., Saranpää, P. (2002) Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood. Tree Physiol. 22:661–666.10.1093/treephys/22.9.661Search in Google Scholar

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231–1237.10.1016/S0891-5849(98)00315-3Search in Google Scholar

Rice-Evans, C.A., Miller, N.J., Paganga, G. (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20:933–956.10.1016/0891-5849(95)02227-9Search in Google Scholar

Rice-Evans, C., Miller, N., Paganga, G. (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci. 2:152–159.10.1016/S1360-1385(97)01018-2Search in Google Scholar

Riley, R., Salamov, A.A., Brown, D.W., Nagy, L.G., Floudas, D., Held, B.W., Levasseur, A., Lombard, V., Morin, E., Otillar, R. (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. P. Natl. Acad. Sci. USA 111:9923–9928.10.1073/pnas.1400592111Search in Google Scholar PubMed PubMed Central

Rosales-Castro, M., González-Laredo, R.F., Rocha-Guzmán, N.E., Gallegos-Infante, J.A., Rivas-Arreola, M.J., Karchesy, J.J. (2012) Antioxidant activity of fractions from Quercus sideroxyla bark and identification of proanthocyanidins by HPLC-DAD and HPLC-MS. Holzforschung 66:577–584.10.1515/hf-2011-0157Search in Google Scholar

Sartori, C., da Silva Mota, G., Ferreira, J., Miranda, I., Mori, Fábio A., Pereira, H. (2016) Chemical characterization of the bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries. Holzforschung 70:819–828.10.1515/hf-2015-0258Search in Google Scholar

Schultz, T.P., Harms, W.B., Fisher, T.H., McMurtrey, K.D., Minn, J., Nicholas, D.D. (1995) Durability of angiosperm heartwood: the importance of extractives. Holzforschung 49:29–34.10.1515/hfsg.1995.49.1.29Search in Google Scholar

Schultz, T.P., Nicholas, D.D. (2000) Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54:47–52.10.1016/S0031-9422(99)00622-6Search in Google Scholar

Schultz, T.P., Nicholas, D.D. (2002) Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators. Phytochemistry 61:555–560.10.1016/S0031-9422(02)00267-4Search in Google Scholar

Schultz, T.P., Nicholas, D.D., Prewitt, M.L. (2004) Environmentally-benign wood preservatives based on an organic biocide: antioxidant combination: ground-contact efficacy ratings and BHT depletion after four years of exposure. Holzforschung 58:300–304.10.1515/HF.2004.046Search in Google Scholar

Schultz, T.P., Nicholas, D.D. (2011) Efficacy of two organic biocides with co-added antioxidants. Holzforschung 65:771–773.10.1515/hf.2011.074Search in Google Scholar

Simić, A., Manojlović, D., Šegan, D., Todorović, M. (2007) Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules 12:2327–2340.10.3390/12102327Search in Google Scholar

Van Acker, S.A.B.E., Van Den Berg, D., Tromp, M.N.J.L., Griffioen, D.H., Van Bennekom, W.P., Van Der Vijgh, W.J.F., Bast, A. (1996) Structural aspects of antioxidant activity of flavonoids. Free Radic. Biol. Med. 20:331–342.10.1016/0891-5849(95)02047-0Search in Google Scholar

Wijayanto, A., Dumarçay, S., Gérardin-Charbonnier, C., Sari, R.K., Syafii, Q., Gérardin, P. (2015) Phenolic and lipophilic extractives in Pinus merkusii Jungh. et de Vries knots and stemwood. Ind. Crop. Prod. 69:466–471.10.1016/j.indcrop.2015.02.061Search in Google Scholar

Willför, S.M., Ahotupa, M.O., Hemming, J.E., Reunanen, M.H.T., Eklund, P.C., Sjöholm, R.E., Eckerman, C.S.E., Pohjamo, S.P., Holmbom, B.R. (2003a) Antioxidant activity of knotwood extractives and phenolic compounds of selected tree species. J. Agric. Food Chem. 51:7600–7606.10.1021/jf030445hSearch in Google Scholar PubMed

Willför, S., Hemming, J., Reunanen, M., Holmbom, B. (2003b) Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung 57:359–372.10.1515/HF.2003.054Search in Google Scholar

Willför, S., Reunanen, M., Eklund, P., Sjöholm, R., Kronberg, L., Fardim, P., Pietarinen S., Holmbom, B. (2004) Oligolignans in Norway spruce and Scots pine knots and Norway spruce stemwood. Holzforschung 58:345–354.10.1515/HF.2004.053Search in Google Scholar

Xie, Y., Xiao, Z., Goodell, B., Jellison, J., Militz, H., Mai, C. (2010) Degradation of wood veneers by Fenton’s reagents: effects of wood constituents and low molecular weight phenolic compounds on hydrogen peroxide decomposition and wood tensile strength loss. Holzforschung 64:375–383.10.1515/hf.2010.055Search in Google Scholar

Xu, G., Goodell, B. (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J. Biotechnol. 87:43–57.10.1016/S0168-1656(00)00430-2Search in Google Scholar

Received: 2016-12-22
Accepted: 2017-3-13
Published Online: 2017-4-13
Published in Print: 2017-6-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2016-0232/html
Scroll to top button