Skip to main content
Log in

Some further results of the laplace transform for variable–order fractional difference equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The Laplace transform is important for exact solutions of linear differential equations and frequency response analysis methods. In comparison with the continuous–time systems, less results can be available for fractional difference equations. This study provides some fundamental results of two kinds of fractional difference equations by use of the Laplace transform. Some discrete Mittag–Leffler functions are defined and their Laplace transforms are given. Furthermore, a class of variable–order and short memory linear fractional difference equations are proposed and the exact solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Abdeljawad, On Riemann and Caputo fractional differences. Comput. Math. Appl. 62 (2011), 1602–1611.

    Article  MathSciNet  Google Scholar 

  2. R. Abu–Saris, Q. Al–Mdallal, On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16, No 3 (2013), 613–629; DOI:10.2478/s13540-013-0039-2; https://www.degruyter.com/view/j/fca.2013.16.issue-3/issue-files/fca.2013.16.issue-3.xml

    Article  MathSciNet  Google Scholar 

  3. G.A. Anastassiou, About discrete fractional calculus with inequalities. Intelligent Mathematics: Computational Analysis Springer (2011), 575–585.

    Chapter  Google Scholar 

  4. F.M. Atici, P.W. Eloe, Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc. 137 (2007), 981–989.

    Article  MathSciNet  Google Scholar 

  5. D. Baleanu, G.C. Wu, Y.R. Bai, F.L. Chen, Stability analysis of Caputo–like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul. 48 (2017), 520–530.

    Article  MathSciNet  Google Scholar 

  6. N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete–time fractional variational problems. Sign. Proc. 91 (2011), 513–524.

    Article  Google Scholar 

  7. J. Cermak, I. Gyori, L. Nechvatal, On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 18, No 3 (2015), 651–672; DOI:10.1515/fca-2015-0040; https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml

    Article  MathSciNet  Google Scholar 

  8. F. Chen, X. Luo, Y. Zhou, Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 2011 (2011), #713201, 12.

    MathSciNet  MATH  Google Scholar 

  9. C. Goodrich, A.C. Peterson, Discrete Fractional Calculus. Springer (2015)

    Book  Google Scholar 

  10. M.T. Holm, The Theory of Discrete Fractional Calculus: Development and Application. University of Nebraska–Lincoln, PhD Thesis (2011)

    Google Scholar 

  11. X.Y. Li, J. Wei, Solving fractional difference equations using the Laplace transform method. Abstr. Appl. Anal. 2014 (2014), # 2308506.

    MathSciNet  MATH  Google Scholar 

  12. H.G. Sun, A. Chang, Y. Zhou, W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, No 1 (2019), 27–59; DOI:10.1515/fca-2019-0003; https://www.degruyter.com/view/j/fca.2019.22.issue-1/issue-files/fca.2019.22.issue-1.xml

    Article  MathSciNet  Google Scholar 

  13. H.G. Sun, W. Chen, Y. Chen, Variable–order fractional differential operators in anomalous diffusion modeling. Physica A 388 (2009), 4586–4592.

    Article  Google Scholar 

  14. H.G. Sun, W. Chen, C. Li, Y. Chen, Finite difference schemes for variable–order time fractional diffusion equation. Int. J. Bifurcat. Chaos 22 (2012), # 1250085.

    Article  MathSciNet  Google Scholar 

  15. H.G. Sun, W. Chen, H. Sheng, Y. Chen, On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys. Lett. A 374 (2010), 906–910.

    Article  Google Scholar 

  16. G.C. Wu, T. Abdeljawad, D. Baleanu, K.T. Wu, Mittag–Leffler stability analysis of fractional discrete–time neural networks via fixed point technique. Nonlinear Anal.: Model. Contr. 24 (2019), 919–936.

    MathSciNet  MATH  Google Scholar 

  17. G.C. Wu, D. Baleanu, S.D. Zeng, Z.G. Deng, Discrete fractional diffusion equation. Nonlinear Dyn. 80 (2015), 281–286.

    Article  MathSciNet  Google Scholar 

  18. G.C. Wu, Z.G. Deng, D. Baleanu, D.Q. Zeng, New variable–order fractional chaotic systems for fast image encryption. Chaos 29 (2019), # 08310311.

    MathSciNet  MATH  Google Scholar 

  19. G.C. Wu, D.Q. Zeng, D. Baleanu, Fractional impulsive differential equations: Exact solutions, integral equations and short memory case. Fract. Calc. Appl. Anal. 22, No 1 (2019), 180–192; DOI:10.1515/fca-2019-0012; https://www.degruyter.com/view/j/fca.2019.22.issue-1/issue-files/fca.2019.22.issue-1.xml

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baleanu, D., Wu, GC. Some further results of the laplace transform for variable–order fractional difference equations. FCAA 22, 1641–1654 (2019). https://doi.org/10.1515/fca-2019-0084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0084

MSC 2010

Key Words and Phrases

Navigation