Skip to main content
Log in

Non-linear Noise Excitation for some Space-Time Fractional Stochastic Equations in Bounded Domains

  • Research paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper we study non-linear noise excitation for the following class of space-time fractional stochastic equations in bounded domains:

$$\partial^\beta_tu_t(x) = -\nu(-\Delta)^{\alpha/2} u_t(x)+I^{1-\beta}_t[\lambda \sigma(u) \stackrel{\cdot}{F}(t,x)] $$

in (d+1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2]. The operator \(\partial^\beta_t\) is the Caputo fractional derivative, −(−Δ)α/2 is the generator of an isotropic stable process and I1βt is the fractional integral operator. The forcing noise denoted by \(\stackrel{\cdot}{F}(t,x)\) is a Gaussian noise. The multiplicative non-linearity σ: ℝ → ℝ is assumed to be globally Lipschitz continuous. These equations were recently introduced by Mijena and Nane [32]. We first study the existence and uniqueness of the solution of these equations and under suitable conditions on the initial function, we also study the asymptotic behavior of the solution with respect to the parameter λ. In particular, our results are significant extensions of those in [14], [16], [32], and [33].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Baeumer, M. Geissert, M. Kovacs, Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise. J. of Differential Equations 258, No 2 (2015), 535–554.

    MathSciNet  MATH  Google Scholar 

  2. B. Baeumer, M. M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4, No 4 (2001), 481–500.

    MathSciNet  MATH  Google Scholar 

  3. J. Bertoin, Lévy Processes. Cambridge Univ. Press, Cambridge (1996).

    MATH  Google Scholar 

  4. L. Boulanba, M. Eddahbi, M. Mellouk, Fractional SPDEs driven by spatially correlated noise: existence of the solution and smoothness of its density. Osaka J. Math. 47, No 1 (2010), 41–65.

    MathSciNet  MATH  Google Scholar 

  5. M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 13 (1967), 529–539; Reprinted in:Fract. Calc. Appl. Anal. 11, No 1 (2008), 3–14; available at http://www.math.bas.bg/~fcaa

    Article  Google Scholar 

  6. L. Chen, Nonlinear stochastic time-fractional diffusion equations on R: moments, Hölder regularity and intermittency. Trans. Amer. Math. Soc. (2016), To appear; available at arXiv:1410.1911.

    Google Scholar 

  7. L. Chen, Y. Hu, D. Nualart, Nonlinear stochastic time-fractional slow and fast diffusion equations on ℝd. Preprint (2015), available at arXiv:1509.07763.

    Google Scholar 

  8. Z.-Q. Chen, K.-H. Kim, P. Kim, Fractional time stochastic partial differential equations. Stochastic Process Appl. 125 (2015), 1470–1499.

    MathSciNet  MATH  Google Scholar 

  9. Z.-Q. Chen, P. Kim, R. Song, Sharp heat kernel estimates for relativistic stable process in open sets. Ann. Probab. 40, No 1 (2012), 213–244.

    MathSciNet  MATH  Google Scholar 

  10. Z.-Q. Chen, M.M. Meerschaert, E. Nane, Space-time fractional diffusion on bounded domains. J. Math. Anal. Appl. 393, No 2 (2012), 479–488.

    MathSciNet  MATH  Google Scholar 

  11. R.C. Dalang, L. Quer-Sardanyons, Stochastic integrals for SPDE’s: a comparison. Expo. Math. 29, No 1 (2011), 67–109.

    MathSciNet  MATH  Google Scholar 

  12. G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications 44, Cambridge Univ. Press, Cambridge (1992).

    MATH  Google Scholar 

  13. O. Defterli, M. D’Elia, Q. Du, M. Gunzburger, R. Lehoucq, M.M. Meerschaert, Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18, No 2 (2015), 342–360; 10.1515/fca-2015-0023; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml

    MathSciNet  MATH  Google Scholar 

  14. M. Foondun, K. Tian, W. Liu, On some properties of a class of fractional stochastic equations. Preprint (2014), available at arXiv:1404.6791.

    Google Scholar 

  15. M. Foondun, W. Liu, M. Omaba, Moment bounds for a class of fractional stochastic heat equations. Preprint (2014), available at arXiv:1409.5687.

    Google Scholar 

  16. M. Foondun, D. Khoshnevisan, Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14, No 21 (2009), 548–568.

    MathSciNet  MATH  Google Scholar 

  17. M. Foondun, D. Khoshnevisan, E. Nualart, A local-time correspondence for stochastic partial differential equations. Trans. Amer. Math. Soc. 363 (2011), 2481–2515.

    MathSciNet  MATH  Google Scholar 

  18. M. Foondun, D. Khoshnevisan, On the stochastic heat equation with spatially-colored random forcing. Trans. Amer. Math. Soc. 365 (2013), 409–458

    MathSciNet  MATH  Google Scholar 

  19. M. Foondun, E. Nane, Asymptotic properties of some spacetime fractional stochastic equations. Preprint (2015), available at arXiv:1505.04615.

    Google Scholar 

  20. H.J. Haubold, A.M. Mathai, R.K. Saxena, Review Article: Mittag-Leffler functions and their applications. J. of Applied Mathematics 2011 (2011), Article ID 298628, 51 pp.

    MATH  Google Scholar 

  21. K. Hu, Ke, N. Jacob, C. Yuan, Existence and uniqueness for a class of stochastic time fractional space pseudo-differential equations. Fract. Calc. Appl. Anal. 19, No 1 (2016), 56–68; 10.1515/fca-2016-0004; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml

    MathSciNet  MATH  Google Scholar 

  22. A. Karczewska, Convolution Type Stochastic Volterra Equations, 101 pp., Lecture Notes. In: Nonlinear Analysis 10, Juliusz Schauder Center for Nonlinear Studies, Torun (2007).

    Google Scholar 

  23. D. Khoshnevisan, K. Kim, Non-linear noise excitation and intermittency under high disorder. Proc. Amer. Math. Soc. 143, No 9 (2015), 4073–4083.

    MathSciNet  MATH  Google Scholar 

  24. D. Khoshnevisan, Analysis of Stochastic Partial Differential Equations. In: CBMS Regional Conf. Ser. in Math., 119. Publ. for the Conference Board of the Math. Sci., Washington, DC; by the Amer. Math. Soc., Providence, RI (2014).

    MATH  Google Scholar 

  25. A.N. Kochubei, The Cauchy problem for evolution equations of fractional order. Differential Equations 25 (1989), 967–974.

    MathSciNet  Google Scholar 

  26. A.M. Mathai, H.J. Haubold, Special Functions for Applied Scientists. Springer (2007).

    MATH  Google Scholar 

  27. M.M. Meerschaert, H.P. Scheffler, Limit theorems for continuous time random walks with infinite mean waiting times. J. Applied Probab. 41, No 3 (2004), 623–638.

    MathSciNet  MATH  Google Scholar 

  28. M.M. Meerschaert, E. Nane, P. Vellaisamy, Fractional Cauchy problems on bounded domains. Ann. Probab. 37 (2009), 979–1007.

    MathSciNet  MATH  Google Scholar 

  29. M.M. Meerschaert, E. Nane, Y. Xiao, Fractal dimensions for continuous time random walk limits. Statist. Probab. Lett. 83 (2013), 1083–1093.

    MathSciNet  MATH  Google Scholar 

  30. M.M. Meerschaert, P. Straka, Inverse stable subordinators. Mathematical Modeling of Natural Phenomena 8, No 2 (2013), 1–16.

    MathSciNet  MATH  Google Scholar 

  31. M.M. Meerschaert, R.L. Magin, A.Q. Ye, Anisotropic fractional diffusion tensor imaging. J. of Vibration and Control 22, No 9 (2016), 2211–2221; Special Issue on Challenges in Fractional Dynamics and Control Theory.

    MathSciNet  Google Scholar 

  32. J.B. Mijena, E. Nane, Space time fractional stochastic partial differential equations. Stochastic Process Appl. 125, No 9 (2015), 3301–3326.

    MathSciNet  MATH  Google Scholar 

  33. J. B. Mijena, E. Nane, Intermittence and time fractional partial differential equations. Potential Anal. 44 (2016), 295–312.

    MathSciNet  MATH  Google Scholar 

  34. R.R. Nigmatullin, The realization of the generalized transfer in a medium with fractal geometry. Phys. Status Solidi B 133 (1986), 425–430.

    Google Scholar 

  35. E. Orsingher, L. Beghin, Fractional diffusion equations and processes with randomly varying time. Ann. Probab. 37 (2009), 206–249.

    MathSciNet  MATH  Google Scholar 

  36. G. Pagnini, P. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 19, No 2 (2016), 408–440; 10.1515/fca-2016-0022; https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml

    MathSciNet  MATH  Google Scholar 

  37. T. Simon, Comparing Fréchet and positive stable laws. Electron. J. Probab. 19, No 16 (2014), 1–25.

    MATH  Google Scholar 

  38. C.A. Tudor, Recent developments on stochastic heat equation with additive fractional-colored noise. Fract. Calc. Appl. Anal. 17, No 1 (2014), 224–246; 10.2478/s13540-014-0164-6;; https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml

    MathSciNet  MATH  Google Scholar 

  39. C.A. Tudor, M. Zili, Covariance measure and stochastic heat equation with fractional noise. Fract. Calc. Appl. Anal. 17, No 3 (2014), 807–826; 10.2478/s13540-014-0199-8; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml

    MathSciNet  MATH  Google Scholar 

  40. S. Umarov, E. Saydamatov, A fractional analog of the Duhamel principle. Fract. Calc. Appl. Anal. 9, No 1 (2006), 57–70; available at http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  41. S.R. Umarov, E.M. Saidamatov, Generalization of the Duhamel principle for fractional-order differential equations (In Russian). Dokl. Akad. Nauk 412, No 4 (2007), 463–465; Transl. in Dokl. Math. 75, No 1 (2007), 94–96.

    Google Scholar 

  42. S. Umarov, On fractional Duhamel’s principle and its applications. J. Differential Equations 252, No 10 (2012), 5217–5234.

    MathSciNet  MATH  Google Scholar 

  43. J.B. Walsh, An Introduction to Stochastic Partial Differential Equations. In: École d’été de Probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math. 1180, Springer, Berlin (1986), 265–439.

    MathSciNet  Google Scholar 

  44. W. Wyss, The fractional diffusion equations. J. Math. Phys. 27 (1986), 2782–2785.

    MathSciNet  MATH  Google Scholar 

  45. G. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos. Chaotic advection, tracer dynamics and turbulent dispersion. Phys. D 76 (1994), 110–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammud Foondun.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foondun, M., Mijena, J.B. & Nane, E. Non-linear Noise Excitation for some Space-Time Fractional Stochastic Equations in Bounded Domains. FCAA 19, 1527–1553 (2016). https://doi.org/10.1515/fca-2016-0079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0079

MSC 2010

Key Words and Phrases

Navigation