Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 8, 2016

Positivity properties of metrics and delta-forms

  • Walter Gubler EMAIL logo and Klaus Künnemann

Abstract

In previous work, we have introduced δ-forms on the Berkovich analytification of an algebraic variety in order to study smooth or formal metrics via their associated Chern δ-forms. In this paper, we investigate positivity properties of δ-forms and δ-currents. This leads to various plurisubharmonicity notions for continuous metrics on line bundles. In the case of a formal metric, we show that many of these positivity notions are equivalent to Zhang’s semipositivity. For piecewise smooth metrics, we prove that plurisubharmonicity can be tested on tropical charts in terms of convex geometry. We apply this to smooth metrics, to canonical metrics on abelian varieties and to toric metrics on toric varieties.

Funding statement: The authors thank the collaborative research center SFB 1085 funded by the Deutsche Forschungsgemeinschaft for its support.

Acknowledgements

The authors would like to thank Antoine Chambert–Loir, Antoine Ducros, Philipp Jell, and Tony Yue Yu for helpful conversations and the referee for numerous helpful comments.

References

[1] M. Baker, S. Payne and J. Rabinoff, Nonarchimedean geometry, tropicalization, and metrics on curves, Algebr. Geom. 3 (2016), no. 1, 63–105. 10.14231/AG-2016-004Search in Google Scholar

[2] M. Baker and R. Rumely, Potential theory and dynamics on the Berkovich projective line, Math. Surveys Monogr. 159, American Mathematical Society, Providence 2010. 10.1090/surv/159Search in Google Scholar

[3] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1–2, 1–40. 10.1007/BF02392348Search in Google Scholar

[4] V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys Monogr. 33, American Mathematical Society, Providence 1990. Search in Google Scholar

[5] V. G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math. Inst. Hautes Études Sci. 78 (1993), 5–161. 10.1007/BF02712916Search in Google Scholar

[6] S. Bloch, H. Gillet and C. Soulé, Non-Archimedean Arakelov theory, J. Algebraic Geom. 4 (1995), no. 3, 427–485. Search in Google Scholar

[7] S. Bosch, Lectures on formal and rigid geometry, Lecture Notes in Math. 2015, Springer, Cham 2014. 10.1007/978-3-319-04417-0Search in Google Scholar

[8] S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren Math. Wiss. 261, Springer, Berlin 1984. 10.1007/978-3-642-52229-1Search in Google Scholar

[9] S. Bosch and W. Lütkebohmert, Degenerating abelian varieties, Topology 30 (1991), no. 4, 653–698. 10.1016/0040-9383(91)90045-6Search in Google Scholar

[10] S. Bosch and W. Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann. 295 (1993), no. 2, 291–317. 10.1007/BF01444889Search in Google Scholar

[11] S. Bosch and W. Lütkebohmert, Formal and rigid geometry. II. Flattening techniques, Math. Ann. 296 (1993), no. 3, 403–429. 10.1007/BF01445112Search in Google Scholar

[12] S. Boucksom, C. Favre and M. Jonsson, Solution to a non-Archimedean Monge–Ampère equation, J. Amer. Math. Soc. 28 (2015), no. 3, 617–667. 10.1090/S0894-0347-2014-00806-7Search in Google Scholar

[13] S. Boucksom, C. Favre and M. Jonsson, Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom. 25 (2016), no. 1, 77–139. 10.1090/jag/656Search in Google Scholar

[14] J. I. Burgos Gil, A. Moriwaki, P. Philippon and M. Sombra, Arithmetic positivity on toric varieties, J. Algebraic Geom. 25 (2016), no. 2, 201–272. 10.1090/jag/643Search in Google Scholar

[15] J. I. Burgos Gil, P. Philippon and M. Sombra, Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque 360, Société Mathématique de France, Paris 2014. Search in Google Scholar

[16] A. Chambert-Loir and A. Ducros, Formes différentielles réelles et courants sur les espaces de Berkovich, preprint (2012), http://arxiv.org/abs/1204.6277. Search in Google Scholar

[17] T. Chinburg, C. F. Lau and R. Rumely, Capacity theory and arithmetic intersection theory, Duke Math. J. 117 (2003), no. 2, 229–285. 10.1215/S0012-7094-03-11722-6Search in Google Scholar

[18] T. Chinburg and R. Rumely, The capacity pairing, J. reine angew. Math. 434 (1993), 1–44. Search in Google Scholar

[19] K. Fujiwara and F. Kato, Foundations of rigid geometry I, preprint (2013), http://arxiv.org/abs/1308.4734v2. 10.4171/135Search in Google Scholar

[20] W. Gubler, Local heights of subvarieties over non-Archimedean fields, J. reine angew. Math. 498 (1998), 61–113. 10.1515/crll.1998.054Search in Google Scholar

[21] W. Gubler, Local and canonical heights of subvarieties, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 4, 711–760. Search in Google Scholar

[22] W. Gubler, A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry, Contemp. Math. 589, American Mathematical Society, Providence (2013), 125–189. 10.1090/conm/589/11745Search in Google Scholar

[23] W. Gubler, Forms and currents on the analytification of an algebraic variety (after Chambert-Loir and Ducros), Nonarchimedean and tropical geometry, Simons Symp., Springer, Cham (2016), 1–30. 10.1007/978-3-319-30945-3_1Search in Google Scholar

[24] W. Gubler and J. Hertel, Local heights of toric varieties over non-archimedean fields, preprint (2015), http://arxiv.org/abs/1512.06574. 10.5802/pmb.15Search in Google Scholar

[25] W. Gubler and K. Künnemann, A tropical approach to non-archimedean Arakelov geometry, preprint (2014), http://arxiv.org/abs/1406.7637. Search in Google Scholar

[26] W. Gubler and F. Martin, On Zhang’s semipositive metrics, preprint (2016), http://arxiv.org/abs/1608.08030. Search in Google Scholar

[27] W. Gubler, J. Rabinoff and A. Werner, Tropical skeletons, preprint (2015), http://arxiv.org/abs/1508.01179. 10.5802/aif.3125Search in Google Scholar

[28] J. Hertel, Heights of toric varieties, PhD thesis, Universität Regensburg, Regensburg 2016, http://epub.uni-regensburg.de/33291/1/Doktorarbeit_finish.pdf. Search in Google Scholar

[29] E. Kani, Potential theory on curves, Théorie des nombres (Quebec 1987), Walter de Gruyter, Berlin (1989), 475–543. 10.1515/9783110852790.475Search in Google Scholar

[30] A. Lagerberg, Super currents and tropical geometry, Math. Z. 270 (2012), no. 3–4, 1011–1050. 10.1007/s00209-010-0837-8Search in Google Scholar

[31] M. Nagata, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ. 2 (1962), 1–10. 10.1215/kjm/1250524969Search in Google Scholar

[32] M. Nagata, A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ. 3 (1963), 89–102. 10.1215/kjm/1250524859Search in Google Scholar

[33] R. S. Rumely, Capacity theory on algebraic curves, Lecture Notes in Math. 1378, Springer, Berlin 1989. 10.1007/BFb0084525Search in Google Scholar

[34] B. Sturmfels and J. Tevelev, Elimination theory for tropical varieties, Math. Res. Lett. 15 (2008), no. 3, 543–562. 10.4310/MRL.2008.v15.n3.a14Search in Google Scholar

[35] M. Temkin, On local properties of non-Archimedean analytic spaces, Math. Ann. 318 (2000), no. 3, 585–607. 10.1007/s002080000123Search in Google Scholar

[36] A. Thuillier, Théorie du potentiel sur les courbes en géométrie analytique non Archimédienne. Applications á la théorie d’Arakelov, PhD thesis, Université de Rennes, 2005, http://tel.archives-ouvertes.fr/docs/00/04/87/50/PDF/tel-00010990.pdf. Search in Google Scholar

[37] P. Ullrich, The direct image theorem in formal and rigid geometry, Math. Ann. 301 (1995), no. 1, 69–104. 10.1007/BF01446620Search in Google Scholar

[38] P. Vojta, Nagata’s embedding theorem, preprint (2007), http://arxiv.org/abs/0706.1907. Search in Google Scholar

[39] X. Yuan and S.-W. Zhang, The arithmetic Hodge index theorem for adelic line bundles, Math. Ann. (2016), 10.1007/s00208-016-1414-1. 10.1007/s00208-016-1414-1Search in Google Scholar

[40] S. Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), no. 1, 171–193. 10.1007/BF01232429Search in Google Scholar

[41] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), no. 1, 187–221. 10.1090/S0894-0347-1995-1254133-7Search in Google Scholar

[42] S. Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281–300. Search in Google Scholar

Received: 2015-10-19
Revised: 2016-09-02
Published Online: 2016-11-08
Published in Print: 2019-07-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/crelle-2016-0060/html
Scroll to top button