Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access September 19, 2018

A Flux Ratio and a Universal Property of Permanent Charges Effects on Fluxes

  • Weishi Liu EMAIL logo

Abstract

In this work, we consider ionic flow through ion channels for an ionic mixture of a cation species (positively charged ions) and an anion species (negatively charged ions), and examine effects of a positive permanent charge on fluxes of the cation species and the anion species. For an ion species, and for any given boundary conditions and channel geometry,we introduce a ratio _(Q) = J(Q)/J(0) between the flux J(Q) of the ion species associated with a permanent charge Q and the flux J(0) associated with zero permanent charge. The flux ratio _(Q) is a suitable quantity for measuring an effect of the permanent charge Q: if _(Q) > 1, then the flux is enhanced by Q; if _ < 1, then the flux is reduced by Q. Based on analysis of Poisson-Nernst-Planck models for ionic flows, a universal property of permanent charge effects is obtained: for a positive permanent charge Q, if _1(Q) is the flux ratio for the cation species and _2(Q) is the flux ratio for the anion species, then _1(Q) < _2(Q), independent of boundary conditions and channel geometry. The statement is sharp in the sense that, at least for a given small positive Q, depending on boundary conditions and channel geometry, each of the followings indeed occurs: (i) _1(Q) < 1 < _2(Q); (ii) 1 < _1(Q) < _2(Q); (iii) _1(Q) < _2(Q) < 1. Analogous statements hold true for negative permanent charges with the inequalities reversed. It is also shown that the quantity _(Q) = |J(Q) − J(0)| may not be suitable for comparing the effects of permanent charges on cation flux and on anion flux. More precisely, for some positive permanent charge Q, if _1(Q) is associated with the cation species and _2(Q) is associated with the anion species, then, depending on boundary conditions and channel geometry, each of the followings is possible: (a) _1(Q) > _2(Q); (b) _1(Q) < _2(Q).

MSC 2010: 34B16; 78A35; 92C35

References

[1] N. Abaid, R. S. Eisenberg, and W. Liu, Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system. SIAM J. Appl. Dyn. Syst. 7 (2008), 1507-1526.10.1137/070691322Search in Google Scholar

[2] P. Bates,W. Liu, H. Lu, and M. Zhang, Ion size and valence effects on ionic flows via Poisson-Nernst-Planck models. Commun. Math. Sci. 15 (2017), 881-901.10.4310/CMS.2017.v15.n4.a1Search in Google Scholar

[3] P. Bates, Y. Jia, G. Lin, H. Lu, and M. Zhang, Individual flux study via steady-state Poisson-Nernst-Planck systems: effects from boundary conditions. SIAM J. Appl. Dyn. Syst. 16 (2017), 410-430.10.1137/16M1071523Search in Google Scholar

[4] V. Barcilon, Ion flow through narrow membrane channels: Part I. SIAM J. Appl. Math. 52 (1992), 1391-1404.10.1137/0152080Search in Google Scholar

[5] V. Barcilon, D.-P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 52 (1992), 1405-1425.10.1137/0152081Search in Google Scholar

[6] V. Barcilon, D.-P. Chen, R. S. Eisenberg, and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 57 (1997), 631-648.10.1137/S0036139995312149Search in Google Scholar

[7] M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Double layer in ionic liquids: Overscreening versus crowding. Phys. Rev. Lett. 106 (2011), 046102 (1-4).10.1103/PhysRevLett.106.046102Search in Google Scholar PubMed

[8] F. Bezanilla, The voltage sensor in voltage-dependent ion channels. Phys. Rev. 80 (2000), 555-592.10.1152/physrev.2000.80.2.555Search in Google Scholar

[9] L. Blum, Mean spherical model for asymmetric electrolytes, Mol. Phys. 30 (1975), 1529-1535.10.1080/00268977500103051Search in Google Scholar

[10] L. Blum and J. S. Høye, Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function J. Phys. Chem. 81 (1977), 1311-1316.10.1021/j100528a019Search in Google Scholar

[11] D. Boda, W. Nonner, M. Valisko, D. Henderson, B. Eisenberg, and D. Gillespie, Steric Selectivity in Na Channels Arising from Protein Polarization and Mobile Side Chains. Biophys. J. 93 (2007), 1960-1980.10.1529/biophysj.107.105478Search in Google Scholar PubMed PubMed Central

[12] D. Boda, M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie, Effect of protein dielectric coeflcient on the ionic selectivity of a calcium channel J. Chem. Phys. 125 (2006), 034901.10.1063/1.2212423Search in Google Scholar PubMed

[13] W. Deng, X. Zhufu, J. Xu, S. Zhao, A new discontinuous Galerkin method for the nonlinear Poisson-Boltzmann equation. Appl. Math. Lett. 49 (2015), 126-132.10.1016/j.aml.2015.05.008Search in Google Scholar

[14] B. Eisenberg, Ion Channels as Devices. J. Comp. Electro. 2 (2003), 245-249.10.1023/B:JCEL.0000011432.03832.22Search in Google Scholar

[15] R. S. Eisenberg, From Structure to Function in Open Ionic Channels. J. Memb. Biol., 171 (1999), pp. 1-24.10.1007/s002329900554Search in Google Scholar

[16] B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38 (2007), 1932-1966.10.1137/060657480Search in Google Scholar

[17] B. Eisenberg and W. Liu, Relative dielectric constants and selectivity ratios in open ionic channels. Mol. Based Math. Biol. 5 (2017), 125-137.10.1515/mlbmb-2017-0008Search in Google Scholar

[18] B. Eisenberg,W. Liu, and H. Xu, Reversal permanent charge and reversal potential: case studies via classical Poisson-Nernst- Planck models. Nonlinearity 28 (2015), 103-127.10.1088/0951-7715/28/1/103Search in Google Scholar

[19] D. Gillespie, A singular perturbation analysis of the Poisson-Nernst-Planck system: Applications to Ionic Channels. Ph.D Dissertation, Rush University at Chicago, 1999.Search in Google Scholar

[20] D. Gillespie and R. S. Eisenberg, Physical descriptions of experimental selectivity measurements in ion channels. European Biophys. J. 31 (2002), 454-466.10.1007/s00249-002-0239-xSearch in Google Scholar PubMed

[21] D. Gillespie, W. Nonner, and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys.: Condens. Matter 14 (2002), 12129-12145.10.1088/0953-8984/14/46/317Search in Google Scholar

[22] D. Gillespie, W. Nonner, and R. S. Eisenberg, Crowded charge in biological ion channels. Nanotech. 3 (2003), 435-438.Search in Google Scholar

[23] D. Gillespie, L. Xu, Y. Wang, and G. Meissner, (De)constructing the Ryanodine receptor: Modeling ion permeation and selectivity of the Calcium release channel. J. Phys. Chem. B 109 (2005), 15598-15610.10.1021/jp052471jSearch in Google Scholar

[24] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117 (1952), 500-544.Search in Google Scholar

[25] A. L. Hodgkin and R. D. Keynes, The potassium permeability of a giant nerve fibre. J. Physiol. 128 (1955), 61-88.10.1113/jphysiol.1955.sp005291Search in Google Scholar

[26] Y. Hyon, B. Eisenberg, and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9 (2010), 459-475.10.4310/CMS.2011.v9.n2.a5Search in Google Scholar

[27] Y. Hyon, J. Fonseca, B. Eisenberg, and C. Liu, Energy variational approach to study charge inversion (layering) near charged walls. Discrete Contin. Dyn. Syst. Ser. B 17 (2012), 2725-2743.10.3934/dcdsb.2012.17.2725Search in Google Scholar

[28] T.-L. Horng, T.-C. Lin, C. Liu, and B. Eisenberg, PNP Equations with Steric Effects: A Model of Ion Flow through Channels. J. Phys. Chem. B 116 (2012), 11422-11441.10.1021/jp305273nSearch in Google Scholar

[29] S. Ji, B. Eisenberg, and W. Liu, Flux Ratios and Channel Structures. J. Dynam. Differential Equations, to appear (Online ID: DOI 10.1007/s10884-017-9607-1).10.1007/s10884-017-9607-1)Search in Google Scholar

[30] S. Ji and W. Liu, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part I: Analysis. J. Dynam. Differential Equations 24 (2012), 955-983.10.1007/s10884-012-9277-ySearch in Google Scholar

[31] S. Ji, W. Liu, and M. Zhang, Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson- Nernst-Planck models. SIAM J. Appl. Math. 75 (2015), 114-135.10.1137/140992527Search in Google Scholar

[32] Y. Jia, W. Liu, and M. Zhang, Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman’s local hard-sphere potential: ion size effects. Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 1775-1802.10.3934/dcdsb.2016022Search in Google Scholar

[33] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages: I. Double-layer charging. Phys. Rev. E 75 (2007), 021502 (1-16).10.1103/PhysRevE.75.021502Search in Google Scholar PubMed

[34] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75 (2007), 021503 (1-11).10.1103/PhysRevE.75.021503Search in Google Scholar PubMed

[35] C.-C. Lee, H. Lee, Y. Hyon, T.-C. Lin, and C. Liu, New Poisson-Boltzmann type equations: one-dimensional solutions. Nonlinearity 24 (2011), 431-458.10.1088/0951-7715/24/2/004Search in Google Scholar

[36] B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes. Nonlinearity 22 (2009), 811-833.10.1088/0951-7715/22/4/007Search in Google Scholar

[37] T.-C. Lin and B. Eisenberg, A new approach to the Lennard-Jones potential and a new model: PNP-steric equations. Commun. Math. Sci. 12 (2014), 149-173.10.4310/CMS.2014.v12.n1.a7Search in Google Scholar

[38] G. Lin, W. Liu, Y. Yi and M. Zhang: Poisson-Nernst-Planck systems for ion flow with density functional theory for local hardsphere potential. SIAM J. Appl. Dyn. Syst. 12 (2013), 1613-1648.10.1137/120904056Search in Google Scholar

[39] J.-L. Liu and B. Eisenberg, Analytical models of calcium binding in a calcium channel. J. Chem. Phys. 141 (2014), 075102.10.1063/1.4892839Search in Google Scholar PubMed

[40] J.-L. Liu and B. Eisenberg, Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels. J. Chem. Phys. 141 (2014), 22D532.10.1063/1.4902973Search in Google Scholar PubMed

[41] J.-L. Liu and B. Eisenberg, Poisson-Fermi model of single ion activities in aqueous solutions. Chem. Phys. Letters 637 (2015), 1-6.10.1016/j.cplett.2015.06.079Search in Google Scholar

[42] P. Liu, X. Ji, Z. Xu, Modified Poisson-Nernst-Planck model with accurate Coulomb correlation in variable media. SIAM J. Appl. Math. 78 (2018), 226-245.10.1137/16M110383XSearch in Google Scholar

[43] W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math. 65 (2005), 754-766.10.1137/S0036139903420931Search in Google Scholar

[44] W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species. J. Differential Equations 246 (2009), 428-451.Search in Google Scholar

[45] W. Liu and B.Wang, Poisson-Nernst-Planck systems for narrowtubular-like membrane channels. J. Dynam. Differential Equations 22 (2010), 413-437.10.1007/s10884-010-9186-xSearch in Google Scholar

[46] W. Liu, X. Tu, and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part II: Numerics. J. Dynam. Differential Equations 24 (2012), 985-1004.10.1007/s10884-012-9278-xSearch in Google Scholar

[47] W. Liu and H. Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow. J. Differential Equations 258 (2015), 1192-1228.10.1016/j.jde.2014.10.015Search in Google Scholar

[48] W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels. Biophys. J. 75 (1998), 1287-1305.10.1016/S0006-3495(98)74048-2Search in Google Scholar PubMed

[49] J.-K. Park and J.W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems:Mathematical study. SIAM J. Appl. Math. 57 (1997), 609-630.10.1137/S0036139995279809Search in Google Scholar

[50] Y. Qiao, X. Liu, M. Chen, and B. Lu, A local approximation of fundamentalmeasure theory incorporated into three dimensional Poisson-Nernst-Planck equations to account for hard sphere repulsion among ions. J. Stat. Phys. 163 (2016),156-174.10.1007/s10955-016-1470-7Search in Google Scholar

[51] Y. Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63 (1989), 980-983.10.1103/PhysRevLett.63.980Search in Google Scholar PubMed

[52] Y. Rosenfeld, Free energy model for the inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98 (1993), 8126-8148.10.1063/1.464569Search in Google Scholar

[53] R. Roth, Fundamental measure theory for hard-sphere mixtures: a review. J. Phys.: Condens.Matter 22 (2010), 063102 (1-18).10.1088/0953-8984/22/6/063102Search in Google Scholar

[54] B. Roux, T. W. Allen, S. Berneche, and W. Im, Theoretical and computational models of biological ion channels. Quat. Rev. Biophys. 37 (2004), 15-103.10.1017/S0033583504003968Search in Google Scholar

[55] Z. Schuss, B. Nadler, and R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys. Rev. E 64 (2001), 1-14.10.1103/PhysRevE.64.036116Search in Google Scholar

[56] A. Singer and J. Norbury, A Poisson-Nernst-Planck model for biological ion channels-an asymptotic analysis in a threedimensional narrow funnel. SIAM J. Appl. Math. 70 (2009), 949-968.10.1137/070687037Search in Google Scholar

[57] A. Singer, D. Gillespie, J. Norbury, and R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst- Planck system: applications to ion channels. European J. Appl. Math. 19 (2008), 541-560.10.1017/S0956792508007596Search in Google Scholar

[58] L. Sun and W. Liu, Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: a case study. J. Dynam. Differential Equations 30 (2018), 779-797 (https://doi.org/10.1007/s10884-017-9578-2).10.1007/s10884-017-9578-2)Search in Google Scholar

[59] X.-S. Wang, D. He, J. Wylie, and H. Huang, Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems. Phys. Rev. E 89 (2014), 022722 (1-14).10.1103/PhysRevE.89.022722Search in Google Scholar PubMed

[60] G.W. Wei, Q. Zheng, Z. Chen, and K. Xia, Variationalmultiscale models for charge transport. SIAM Review54 (2012), 699-754.10.1137/110845690Search in Google Scholar PubMed PubMed Central

[61] M. Zhang, Asymptotic expansions and numerical simulations of I-V relations via a steady-state Poisson-Nernst-Planck system. Rocky Mountain J. Math. 45 (2015), 1681-1708.10.1216/RMJ-2015-45-5-1681Search in Google Scholar

[62] H. H. Ussing, The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 19 (1949), 43-56.10.1111/j.1748-1716.1949.tb00633.xSearch in Google Scholar

[63] J. Vincze, M. Valiskó, and D. Boda, The non monotonic concentration dependence of the mean activity coeflcient of electrolytes is a result of a balance between salvation and ion-ion correlations. J. Chem. Phys. 133 (2010), 154507(1-6).10.1063/1.3489418Search in Google Scholar PubMed

[64] M. Valiskó and D. Boda, Comment on “The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye-Hückel Theory”. J. Phys. Chem. B 119 (2015), 14332-14336.Search in Google Scholar

[65] D. Xie, J.-L. Liu, and B. Eisenberg, Nonlocal Poisson-Fermi model for ionic solvent. Phys. Rev. E 94 (2016), 012114.10.1103/PhysRevE.94.012114Search in Google Scholar PubMed

[66] Y. Yu,W. Huang, andW. Liu, Permanent charge effects on ionic flow: a numerical study of flux ratio and bifurcation. Preprint.Search in Google Scholar

[67] L. Zhang, B. Eisenberg, and W. Liu, An effect of large permanent charge: Decreasing flux with increasing transmembrane potential. Eur. Phys. J. Special Topics, accepted.Search in Google Scholar

[68] Q. Zheng and G. W. Wei, Poisson-Boltzmann-Nernst-Planck model. J. Chem. Phys. 134 (2011), 194101.10.1063/1.3581031Search in Google Scholar PubMed PubMed Central

[69] Q. Zheng, D. Chen, and G.W. Wei, Second-order Poisson-Nernst-Planck solver for ion transport. J. Comput. Phys. 230 (2011), 5239-5262.10.1016/j.jcp.2011.03.020Search in Google Scholar

[70] S. Zhou, Z. Wang, and B. Li, Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach. Phy. Rev. E 84 (2011), 021901 (1-13).10.1103/PhysRevE.84.021901Search in Google Scholar PubMed PubMed Central

Received: 2018-05-14
Accepted: 2018-09-04
Published Online: 2018-09-19
Published in Print: 2018-09-01

© 2018 Weishi Liu, published by Sciendo

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.1515/cmb-2018-0003/html
Scroll to top button