Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 18, 2016

Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry

  • Rong-Xian Zhang , Jin-Song Gong , Wen-Fang Dou , Dan-Dan Zhang , Yu-Xia Zhang , Heng Li , Zhen-Ming Lu , Jin-Song Shi EMAIL logo and Zheng-Hong Xu EMAIL logo
From the journal Chemical Papers

Abstract

Surfactant-stable keratinases with good properties are promising candidates for extensive applications in detergent industries. A novel fungal keratinase-producing strain, Gibberella intermedia CA3-1, is described in this study. The keratinase production medium was optimized and composed of 10 g L−1 of wool powder, 5 g L−1 of tryptone, 10 g L−1 of maltodextrin and 0.5 g L−1 of NaCl. Keratinase activity was increased up to 109 U mL−1 from 15 U mL−1 by culture optimization. The optimal reaction pH and temperature of the enzyme were 9.0 and 60°C, respectively. The keratinase activity could be improved by sodium dodecyl sulphate (SDS), and it remained stable in the presence of several surfactants and commercial detergents. G. intermedia keratinase was proved to completely remove blood stains from cotton cloth when combined with detergents. These findings indicate that this fungal keratinase is a promising catalyst for the application in detergent industry. To our knowledge, this is the first report on keratinase production by Gibberella genus.

Acknowledgements

This work was financially supported by the National High Technology Research and Program of the People's Republic of China (No. 2012AA022204C), and the Ministry of Education of the People's Republic of China (No. JUSRP51516).

References

Anbu, P., Gopinath, S. C. B., Hilda, A., Lakshmi priya, T., & Annadurai, G. (2005). Purification of keratinase from poultry farm isolate Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme and Microbial Technology, 36, 639–647. 10.1016/j.enzmictec.2004.07.019.Search in Google Scholar

Anitha, T. S., & Palanivelu, P. (2013). Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expression and Purification, 88, 214–220. 10.1016/j.pep.2013.01. 007.Search in Google Scholar

Anstrup, K., & Anderson, O. (1974). U.S. Patent No. 3,827,933. Washington, D.C., USA: U.S. Patent and Trademark Office.Search in Google Scholar

Arulmani, M., Aparanjini, K., Vasanthi, K., Arumugam, P., Arivuchelvi, M., & Kalaichelvan, P. T. (2006). Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1. World Journal of Microbiology and Biotechnology, 23, 475–481. 10.1007/s11274-006-9249-7.Search in Google Scholar

Beg, Q. K., Sahai, V., & Gupta, R. (2003). Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochemistry, 39, 203–209. 10.1016/s0032-9592(03)00064-5.Search in Google Scholar

Bernal, C., Cairó, J., & Coello, N. (2006). Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzyme and Microbial Technology, 38, 49–54. 10.1016/j.enzmictec.2005.02.021.Search in Google Scholar

Brandelli, A., Daroit, D. J., & Riffel, A. (2010). Biochemical features of microbial keratinases and their production and applications. Applied Microbiology and Biotechnology, 85, 1735–1750. 10.1007/s00253-009-2398-5.Search in Google Scholar PubMed

Brouta, F., Descamps, F., Fett, T., Losson, B., Gerday, C., & Mignon, B. (2001). Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Medical Mycology, 39, 269–275. 10.1080/mmy.39.3.269.275.Search in Google Scholar PubMed

Daroit, D. J., & Brandelli, A. (2014). A current assessment on the production of bacterial keratinases. Critical Reviews in Biotechnology, 34, 372–384. 10.3109/07388551.2013. 794768.Search in Google Scholar

Deng, A. H., Wu, J., Zhang, Y., Zhang, G. Q., & Wen, T. (2010). Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresource Technology, 101, 7100–7106. 10.1016/j.biortech. 2010.03.130.Search in Google Scholar

Fakhfakh-Zouari, N., Hmidet, N., Haddar, A., Kanoun, S., & Nasri, M. (2010). A novel serine metallokeratinase from a newly isolated Bacillus pumilus A1 grown on chicken feather meal: Biochemical and molecular characterization. Applied Biochemistry and Biotechnology, 162, 329–344. 10.1007/s12010-009-8774-x.Search in Google Scholar PubMed

Farag, A. M., & Hassan, M. A. (2004). Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology, 34, 85–93. DOI: 10.1016/j.enzmictec.2003.09.002.10.1016/j.enzmictec.2003.09.002Search in Google Scholar

Gong, J. S., Wang, Y., Zhang, D. D., Zhang, R. X., Su, C., Li, H., Zhang, X. M., Xu, Z. H., & Shi, J. S. (2015). Biochemical characterization of an extreme alkaline and surfactant-stable keratinase derived from a newly isolated actinomycete Streptomyces aureofaciens K13. RSC Advances, 5, 24691–24699. 10.1039/c4ra16423g.Search in Google Scholar

Gradišar, H., Kern, S., & Friedrich, J. (2000). Keratinase of Doratomyces microsporus. Applied Microbiology and Biotechnology, 53, 196–200. 10.1007/s002530050008.Search in Google Scholar PubMed

Gradišar, H., Friedrich, J., Krizaj, I., & Jerala, R. (2005). Similarities and specificities of fungal keratinolytic proteases: Comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Applied and Environmental Microbiology, 71, 3420–3426. 10.1128/aem.71.7.3420-3426.2005.Search in Google Scholar

Gupta, R., & Ramnani, P. (2006). Microbial keratinases and their prospective applications: An overview. Applied Microbiology and Biotechnology, 70, 21–33. 10.1007/s00253-005-0239-8.Search in Google Scholar PubMed

Gupta, R., Sharma, R., & Beg, Q. K. (2013). Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 33, 216–228. 10.3109/07388551.2012.685051.Search in Google Scholar PubMed

Ismail, A. M. S., Housseiny, M. M., Abo-Elmagd, H. I., El-Sayed, N. H., & Habib, M. (2012). Novel keratinase from Trichoderma harzianum MH-20 exhibiting remarkable dehairing capabilities. International Biodeterioration & Biodegradation, 70, 14–19. 10.1016/j.ibiod.2011.10.013.Search in Google Scholar

Itsune, O., Isao, M., Keizo, H., Naoya, I., Mayumi, H., & Hisami, M. (2002). Japan Patent No. 2,002,256,294. Tokyo, Japan: Japan Patent Office.Search in Google Scholar

Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M., & Bejar, S. (2008). Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie, 90, 1291–1305. 10.1016/j.biochi.2008.03.004.Search in Google Scholar PubMed

Liu, B. H., Zhang, J., Fang, Z., Gu, L., Liao, X. G., Du, G. C., & Chen, J. (2013). Enhanced thermostability of keratinase by computational design and empirical mutation. Journal of Industrial Microbiology & Biotechnology, 40, 697–704. 10.1007/s10295-013-1268-4.Search in Google Scholar PubMed

Moreira-Gasparin, F. G., de Souza, C. G. M., Costa, A. M., Alexandrino, A. M., Bracht, C. K., Boer, C. G., & Peralta, R. M. (2009). Purification and characterization of an efficient poultry feather degrading-protease from Myrothecium verrucaria. Biodegradation, 20, 727–736. 10.1007/s10532-009-9260-4.Search in Google Scholar PubMed

Paul, T., Das, A., Mandal, A., Halder, S. K., Das Mohpatra, P. K., Pati, B. R., & Mondal, K. C. (2013). Biochemical and structural characterization of a detergent stable alkaline serine keratinase from Paenibacillus Woosongensis TKB2: A potential additive for laundry detergent. Waste and Biomass Valorization, 5, 563–574. 10.1007/s12649-013-9265-4.Search in Google Scholar

Paul, T., Das, A., Mandal, A., Halder, S. K., Jana, A., Maity, C., Das Mohpatra, P. K., Pati, B. R., & Mondal, K. C. (2014). An efficient cloth cleaning properties of a crude keratinase combined with detergent: Towards industrial viewpoint. Journal of Cleaner Production, 66, 672–684. 10.1016/j.jclepro.2013.10.054Search in Google Scholar

Paul, T., Jana, A., Mandal, A. K., Mandal, A., Das Mohpatra, P. K., & Mondal, K. C. (2016). Bacterial keratinolytic protease, imminent starter for NextGen leather and detergent industries. Sustainable Chemistry and Pharmacy, 3, 8–22. 10.1016/j.scp.2016.01.001.Search in Google Scholar

Pillai, P., & Archana, G. (2008). Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Applied Microbiology and Biotechnology, 78, 643–650. 10.1007/s00253-008-1355-z.Search in Google Scholar PubMed

Röhm, O. (1913). German Patent No. 283,923. München, Germany: German Patent and Trade Mark OfficeSearch in Google Scholar

Rai, S. K., Konwarh, R., & Mukherjee, A. K. (2009). Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochemical Engineering Journal, 45, 218–225. 10.1016/j.bej.2009.04.001Search in Google Scholar

Rajput, R., Sharma, R., & Gupta, R. (2010). Biochemical characterization of a thiol-activated, oxidation stable keratinase from Bacillus pumilus KS12. Enzyme Research, 2010, 132148. 10.4061/2010/132148.Search in Google Scholar PubMed PubMed Central

Ramesh, S., Rajesh, M., & Mathivanan, N. (2009). Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosystems Engineering, 32, 791–800. 10.1007/s00449-009-0305-1.Search in Google Scholar PubMed

Riffel, A., & Brandelli, A. (2002). Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. Journal of Industrial Microbiology Biotechnology, 29, 255–258. 10.1038/sj.jim.7000307.Search in Google Scholar PubMed

Santos, R. M. D. B., Firmino, A. A. P., de Sá, C. M., & Felix, C. R. (1996). Keratinolytic activity of Aspergillus fumigatus Fresenius. Current Microbiology, 33, 364–370. 10.1007/s002849900129.Search in Google Scholar PubMed

Singh, S. K., Singh, S. K., Tripathi, V. R., & Garg, S. K. (2012). Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochemistry, 47, 1479–1487. 10.1016/j.procbio.2012.05.021.Search in Google Scholar

Subba Rao, C., Sathish, T., Ravichandra, P., & Prakasham, R. S. (2009). Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochemistry, 44, 262–268. 10.1016/j.procbio.2008.10.022.Search in Google Scholar

Tiwary, E., & Gupta, R. (2010). Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: Biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technology, 101, 6103–6110. 10.1016/j.biortech.2010. 02.090Search in Google Scholar

Tork, S. E., Shahein, Y. E., El-Hakim, A. E., Abdel-Aty, A. M., & Aly, M. M. (2013). Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. International Journal of Biological Macromolecules, 55, 169–175. 10.1016/j.ijbiomac.2013.01.002.Search in Google Scholar PubMed

Wu, Y., Gong, J. S., Lu, Z. M., Li, H., Zhu, X. Y., Li, H., Shi, J. S., & Xu, Z. H. (2013). Isolation and characterization of Gibberella intermedia CA3-1, a novel and versatile nitrilase-producing fungus. Journal of Basic Microbiology, 53, 934–941. 10.1002/jobm.201200143.Search in Google Scholar PubMed

Received: 2015-12-28
Revised: 2016-3-7
Accepted: 2016-3-23
Published Online: 2016-7-18
Published in Print: 2016-11-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2016-0086/html
Scroll to top button