Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 30, 2015

Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery

  • Jin-Sheng Sun , Wei-Chao Du EMAIL logo , Xiao-Lin Pu , Zhuan-Zheng Zou and Bo-Bo Zhu
From the journal Chemical Papers

Abstract

A novel polymerizable hydrophobic monomer 1-(4-dodecyloxy-phenyl)-propenone (DPP) was synthesized by esterification, Frise rearrangement and Williamson etherification; then, the obtained DPP was copolymerized with 2-(acrylamido)-dodecanesulfonic acid (AMC12S) and acrylamide (AM) initiated by a redox initiation system in an aqueous medium to enhance oil recovery (EOR). AM/AMC12S/DPP (PADP) was characterized by FT-IR, 1H NMR spectroscopy, environmental scanning electron microscopy (ESEM), DSC-TG, fluorescent probe, core flood test, etc. Results of ESEM and fluorescent probe indicate that hydrophobic microdomains and associating threedimensional networks were formed in the aqueous solution of PADP. Results of DSC-TG demonstrated that long carbon chains, aromatic groups and sulfonic groups were incorporated into the PADP polymer, which can lead to a significant increase of the rigidity of molecular chains. Performance evaluation of experiments showed superior properties in regard to temperature-tolerance, shear-tolerance and salt-tolerance. In the Sandpack Flooding Test, PADP brine solution showed a significant increase in EOR at 65◦C because of its high thickening capability. All these features indicate that PADP has a potential application in EOR at harsh conditions.

References

Bera, A., Kumar, T., Ojha, K., & Mandal, A. (2013). Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies. Applied Surface Science, 284, 87-99. DOI: 10.1016/j.apsusc.2013.07.029.10.1016/j.apsusc.2013.07.029Search in Google Scholar

Bera, A., Kumar, T., Ojha, K., & Mandal, A. (2014a). Screening of microemulsion properties for application in enhanced oil recovery. Fuel, 121, 198-207. DOI: 10.1016/j.fuel.2013.12.051.10.1016/j.fuel.2013.12.051Search in Google Scholar

Bera, A., Mandal, A., & Kumar, T. (2014b). Physicochemical characterization of anionic and cationic microemulsions: Water solubilization, particle size distribution, surface tension and structural parameters. Journal of Chemical & Engineering Data, 59, 2490-2498. DOI: 10.1021/je500274r.10.1021/je500274rSearch in Google Scholar

Casarano, R., Bentini, R., Bueno, V. B., Iacovella, T., Monteiro, F. B. F., Iha, F. A. S., Campa, A., Petri, D. F. S., Jaffe, M., & Catalani, L. H. (2009). Enhanced fibroblast adhesion and proliferation on electrospun fibers obtained from poly(isosorbide succinate-b-L-lactide) block copolymers. Polymer, 50, 6218-6227. DOI: 10.1016/j.polymer.2009.10.048.10.1016/j.polymer.2009.10.048Search in Google Scholar

Deng, Q. H., Li, H. P., Li, Y., Cao, X. L., Yang, Y., & Song, X. W. (2014). Rheological properties and salt resistance of a hydrophobically associating polyacrylamide. Australian Journal of Chemistry, 67, 1396-1402. DOI: 10.1071/ch14204.10.1071/CH14204Search in Google Scholar

Eastoe, J., Paul, A., Nave, S., Steytler, D. C., Robinson, B. H., Rumsey, E., Thorpe, M., & Heenan, R. K. (2001). Micellization of hydrocarbon surfactants in supercritical carbon dioxide. Journal of the American Chemical Society, 123, 988-989. DOI: 10.1021/ja005795o.10.1021/ja005795oSearch in Google Scholar PubMed

Friedrich, T., Tieke, B., Stadler, F. J., & Bailly, C. (2011). Copolymer hydrogels of acrylic acid and a nonionic surfmer: pH-induced switching of transparency and volume and improved mechanical stability. Langmuir, 27, 2997-3005. DOI: 10.1021/la104585k.10.1021/la104585kSearch in Google Scholar PubMed

Gao, B. J., Yu, Y. M., & Jiang, L. D. (2007a). Studies on micellar behavior of anionic and surface-active monomers with acrylamide type in aqueous solutions. Colloids and Surfaces A, 293, 210-216. DOI: 10.1016/j.colsurfa.2006.07.034.10.1016/j.colsurfa.2006.07.034Search in Google Scholar

Gao, B. J., Jiang, L. D., & Liu, K. K. (2007b). Microstructure and association property of hydrophobically modified polyacrylamide of a new family. European Polymer Journal, 43, 4530-4540. DOI: 10.1016/j.eurpolymj.2007.03.049.10.1016/j.eurpolymj.2007.03.049Search in Google Scholar

Hourdet, D., Ducouret, G., Varghese, S., Badiger, M. V., & Wadgaonkar, P. P. (2013). Thermodynamic behavior of hydrophobically modified polyacrylamide containing random distribution of hydrophobes: Experimental and theoretical investigations. Polymer, 54, 2676-2689. DOI: 10.1016/j. polymer.2013.03.039.Search in Google Scholar

Jiménez-Regalado, E., Selb, J., & Candau, F. (2000). Effect of surfactant on the viscoelastic behavior of semidilute solutions of multisticher associating polyacrylamides. Langmuir, 16, 8611-8621. DOI: 10.1021/la000168y.10.1021/la000168ySearch in Google Scholar

Koromilas, N. D., Lainioti, G. C., Oikonomou, E. K., Bokias, G., & Kallitsis, J. K. (2014). Synthesis and self-association in dilute aqueous solution of hydrophobically modified polycations and polyampholytes based on 4-vinylbenzyl chloride. European Polymer Journal, 54, 39-51. DOI: 10.1016/j. eurpolymj.2014.02.009.Search in Google Scholar

Ma, L. H., Guo, Y. J., Feng, R. S., Xiang, P. P., & Li, C. H. (2014). Synthesis and micellar behaviors of an anionic polymerizable surfactant. Journal of the Chinese Chemical Society, 61, 583-588. DOI: 10.1002/jccs.201300372.10.1002/jccs.201300372Search in Google Scholar

Mandal, A., Samanta, A., Bera, A., & Ojha, K. (2010). Characterization of oil-water emulsion and its use in enhanced oil recovery. Industrial & Engineering Chemistry Research, 49, 12756-12761. DOI: 10.1021/ie101589x.10.1021/ie101589xSearch in Google Scholar

Morales, D. V., & Rivas, B. L. (2015). Poly(2-acrylamidoglycolic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid) and poly(2-acrylamidoglycolic acid-co-4-styrene sodium sulfonate): synthesis, characterization, and properties for use in the removal of Cd(II), Hg(II), Zn(II) and Pb(II). Polymer Bulletin, 72, 339-352. DOI: 10.1007/s00289-014-1277-0.10.1007/s00289-014-1277-0Search in Google Scholar

Nishida, I., Okaue, Y., & Yokoyama, T. (2010). Effects of adsorption conformation on the dispersion of aluminum hydroxide particles by multifunctional polyelectrolytes. Langmuir, 26, 11663-11669. DOI: 10.1021/la1008522.10.1021/la1008522Search in Google Scholar PubMed

Patterson, J. P., Kelley, E. G., Murphy, R. P., Moughton, A. O., Robin, M. P., Lu, A., Colombani, O., Chassenieux, C., Cheung, D., Sullivan, M. O., Epps, T. H., & O’Reilly, R. K. (2013). Structural characterization of amphiphilic homopolymer micelles using light scattering, SANS and Cryo-TEM. Macromolecules, 46, 6319-6325. DOI: 10.1021/ma4007544.10.1021/ma4007544Search in Google Scholar PubMed PubMed Central

Pu, W. F., Liu, R.,Wang, K. Y., Li, K. X., Yan, Z. P., Li, B., & Zhao, L. (2015). Water-soluble core-shell hyperbranched polymers for enhanced oil recovery. Industrial & Engineering Chemistry Research, 54, 798-807. DOI: 10.1021/ie5039693.10.1021/ie5039693Search in Google Scholar

Roy, A., Comesse, S., Grisel, M., Hucher, N., Souguir, Z., & Renou, F. (2014). Hydrophobically modified xanthan: An amphiphilic but not associative polymer. Biomacromolecules, 15, 1160-1170. DOI: 10.1021/bm4017034.10.1021/bm4017034Search in Google Scholar PubMed

Samanta, A., Bera, A., Ojha, K., & Mandal, A. (2010). Effects of alkali, salts and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions. Journal of Chemical & Engineering Data, 55, 4315-4322. DOI: 10.1021/je100458a.10.1021/je100458aSearch in Google Scholar

Samanta, A., Ojha, K., & Mandal, A. (2011). Interactions between acidic crude oil and alkali and their effects on enhanced oil recovery. Energy & Fuels, 25, 1642-1649. DOI: 10.1021/ef101729f.10.1021/ef101729fSearch in Google Scholar

Siano, D. B., Bock, J., Myer, P., & Valint, P. L. (1989). Fluorescence and light scattering from water-soluble hydrophobically associating polymers. In J. E. Glass (Ed.), Polymers in aqueous media (pp. 425-435). Washington, DC, USA: American Chemical Society. DOI: 10.1021/ba-1989-0223.ch023.10.1021/ba-1989-0223.ch023Search in Google Scholar

Stähler, K., Selb, J., Barthelemy, P., Pucci, B., & Candau, F. (1998). Novel hydrocarbon and fluorocarbon polymerizable surfactants: Synthesis, characterization and mixing behavior. Langmuir, 14, 4765-4775. DOI: 10.1021/la980245d.10.1021/la980245dSearch in Google Scholar

Thomas, S. (2008). Enhanced oil recovery - an overview. Oil & Gas Science and Technology, 63, 9-19. DOI: 10.2516/ogst: 2007060.Search in Google Scholar

Veerabhadrappa, S. K., Doda, A., Trivedi, J. J., & Kuru, E. (2013). On the effect of polymer elasticity on secondary and tertiary oil recovery. Industrial & Engineering Chemistry Research, 52, 18421-18428. DOI: 10.1021/ie4026456.10.1021/ie4026456Search in Google Scholar

Volpert, E., Selb, J., Candau, F., Green, N., Argillier, J. F., & Audibert, A. (1998). Adsorption of hydrophobically associating polyacrylamides on clay. Langmuir, 14, 1870-1879. DOI: 10.1021/la970358h.10.1021/la970358hSearch in Google Scholar

Wu, S. H., Shanks, R. A., & Bryant, G. (2006). Properties of hydrophobically modified polyacrylamide with low molecular weight and interaction with surfactant in aqueous solution. Journal of Applied Polymer Science, 100, 4348-4360. DOI: 10.1002/app.23282.10.1002/app.23282Search in Google Scholar

Zhong, C. R., Luo, P. Y., Ye, Z. B., & Chen, H. (2009). Characterization and solution properties of a novel water-soluble terpolymer for enhanced oil recovery. Polymer Bulletin, 62, 79-89. DOI: 10.1007/s00289-008-1007-6.10.1007/s00289-008-1007-6Search in Google Scholar

Zhou, C. J., Yang, W. M., Yu, Z. N., Zhou, W. L., Xia, Y. M., Han, Z.W., & Wu, Q. L. (2011). Synthesis and solution properties of novel comb-shaped acrylamide copolymers. Polymer Buletin, 66, 407-417. DOI: 10.1007/s00289-010-0360-4.10.1007/s00289-010-0360-4Search in Google Scholar

Zhu, Z. Y., González, Y. I., Xu, H. X., Kaler, E. W., & Liu, S. Y. (2006). Polymerization of anionic wormlike micelles. Langmuir, 22, 949-955. DOI: 10.1021/la052384i.10.1021/la052384iSearch in Google Scholar PubMed

Zhu, Y. C., Lowe, A. B., & Roth, P. J. (2014). Postpolymerization synthesis of (bis)amide (co)polymers: Thermoresponsive behavior and self-association. Polymer, 55, 4425-4431. DOI: 10.1016/j.polymer.2014.07.003.10.1016/j.polymer.2014.07.003Search in Google Scholar

Zou, C. J., Zhao, P. W., Hu, X. Z., Yan, X. L., Zhang, Y. Y., Wang, X. J., Song, R. T., & Luo, P. Y. (2013). β-Cyclodextrin-functionalized hydrophobically associating acrylamide copolymer for enhanced oil recovery. Energy & Fuels, 27, 2827-2834. DOI: 10.1021/ef302152t.10.1021/ef302152tSearch in Google Scholar

Zou, C. J., Gu, T., Xiao, P. F., Ge, T. T., Wang, M., & Wang, K. (2014). Experimental study of cucurbit[7]uril derivatives modified acrylamide polymer for enhanced oil recovery. Industrial & Engineering Chemistry Research, 53, 7570-7578. DOI: 10.1021/ie4037824. 10.1021/ie4037824Search in Google Scholar

Received: 2015-3-20
Revised: 2015-6-16
Accepted: 2015-6-16
Published Online: 2015-9-30
Published in Print: 2015-12-1

Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0185/html
Scroll to top button