Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 1, 2015

Ce(III) immobilised on aminated epichlorohydrin-activated agarose matrix – “green” and efficient catalyst for transamidation of carboxamides

  • Zeinab Zarei and Batool Akhlaghinia EMAIL logo
From the journal Chemical Papers

Abstract

The present study reports the preparation and characterisation of Ce(III) immobilised on an aminated epichlorohydrin-activated agarose matrix (CAEA) as a “green” catalyst. The catalyst was synthesised by the reaction of the epichlorohydrin-activated agarose matrix with ammonia solution, which was then treated with Ce(NO3)3 · 6H2O. The catalyst (CAEA) was characterised by FT-IR, far IR, CHN, XRD, TGA, and ICP techniques. CAEA is shown to be an effective and reusable heterogeneous catalyst for the transamidation of carboxamides with amines under solventfree conditions. The catalyst was successfully applied to the synthesis of a wide range of aromatic and aliphatic amides. High efficiency, mild reaction conditions, easy work-up, simple separation and also reusability are important advantages of this catalyst.

References

Alghool, S., Abd El-Halim, H. F., Abd El-sadek, M. S., Yahia, I. S., & Wahab, L. A. (2013). Synthesis, thermal characterization, and antimicrobial activity of lanthanum, cerium, and thorium complexes of amino acid Schiff base ligand. Journal of Thermal Analysis and Calorimetry, 112, 671-681. DOI: 10.1007/s10973-012-2628-4.10.1007/s10973-012-2628-4Search in Google Scholar

Allen, C. L., Atkinson, B. N., & Williams, J. M. J. (2012). Transamidation of primary amides with amines using hydroxylamine hydrochloride as an inorganic catalyst. Angewandte Chemie International Edition, 51, 1383-1386. DOI: 10.1002/anie.201107348.10.1002/anie.201107348Search in Google Scholar PubMed

Anirudhan, T. S., Rauf, T. A., & Rejeena, S. R. (2012). Removal and recovery of phosphate ions from aqueous solutions by amine functionalized epichlorohydrin-grafted cellulose. Desalination, 285, 277-284. DOI: 10.1016/j.desal.2011.10.014.10.1016/j.desal.2011.10.014Search in Google Scholar

Atkinson, B. N., Chhatwal, A. R., Lomax, H. V., Walton, J. W., & Williams, J. M. J. (2012). Transamidation of primary amides with amines catalyzed by zirconocene dichloride. Chemical Communications, 48, 11626-11628. DOI: 10.1039/c2cc37427g.10.1039/c2cc37427gSearch in Google Scholar PubMed

Ayub Ali, Md., Hakim Siddiki, S. M. A., Kon, K., & Shimizu, K. i. (2014). Fe+3-exchanged clay catalyzed transamidation of amides with amines under solvent-free condition. Tetrahedron Letters, 55, 1316-1319. DOI: 10.1016/j.tetlet.2013.12.111.10.1016/j.tetlet.2013.12.111Search in Google Scholar

Becerra-Figueroa, L., Ojeda-Porras, A., & Gamba-Sánchez, D. (2014). Transamidation of carboxamides catalyzed by Fe(III) and water. The Journal of Organic Chemistry, 79, 4544-4552. DOI: 10.1021/jo500562w.10.1021/jo500562wSearch in Google Scholar PubMed

Cao, X. J., Zhu, J. W., Wang, D. W., Dai, G. C., & Wu, X. Y. (1997). Affinity chromatography purification of urokinase with epichlorohydrin activited agarose martix. Chinese Journal of Chemical Enginneering, 5, 69-73.Search in Google Scholar

Dam, J. H., Osztrovszky, G., Nordstrøm, L. U., & Madsen, R. (2010). Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes. Chemistry - A European Journal, 16, 6820-6827. DOI: 10.1002/chem.201000569.10.1002/chem.201000569Search in Google Scholar PubMed

Du, J. A., Luo, K., & Zhang, X. L. (2014). Synthesis of amides through an oxidative amidation of tetrazoles with aldehydes under transition-metal-free conditions. RSC Advances, 4, 54539-54546. DOI: 10.1039/c4ra07658c.10.1039/C4RA07658CSearch in Google Scholar

El-Arnaouty, M. B., Eid, M., Atia, A., & Dessouki, A. (2009). Characterization and application of grafted polypropylene and polystyrene treated with epichlorohydrin coupled with cellulose or starch for immobilization processes. Journal of Applied Polymer Science, 112, 629-638. DOI: 10.1002/app.29364.10.1002/app.29364Search in Google Scholar

Fang, C., Qian, W. X., & Bao, W. L. (2008). A mild and clean method for oxidative formation of amides from aldehydes and amines. Synlett, 2008, 2529-2531. DOI: 10.1055/s-2008-1078218.10.1055/s-2008-1078218Search in Google Scholar

Fu, R. Z., Yang, Y., Chen, Z. K., Lai, W. C., Ma, Y.F., Wang, Q., & Yuan, R. X. (2014). Microwave-assisted heteropolyanion-based ionic liquids catalyzed transamidation of non-activated carboxamides with amines under solvent-free conditions. Tetrahedron, 70, 9492-9499. DOI: 10.1016/j.tet.2014.10.066.10.1016/j.tet.2014.10.066Search in Google Scholar

Gaye, M., Tamboura, F. B., & Sall, A. S. (2003). Spectroscopic studies of some lanthanide(III) nitrate complexes synthesized from a new ligand 2,6-bis-(salicylaldehyde hydrazone)-4-chlorophenol. Bulletin of the Chemical Society of Ethiopia, 17, 27-34. DOI: 10.4314/bcse.v17i1.61726.10.4314/bcse.v17i1.61726Search in Google Scholar

Ghodsinia, S. S. E., Akhlaghinia, B., Safaei, E., & Eshghi, H. (2013). Green and selective synthesis of N-substitued amides using water soluble porphyrazinato copper(II) catalyst. Journal of the Brazilian Chemical Society, 24, 895-903. DOI: 10.5935/0103-5053.20130115.10.5935/0103-5053.20130115Search in Google Scholar

Ghosh, S. C., Li, C. C., Zeng, H. C., Ngiam, J. S. Y., Seayad, A.M., & Chen, A. Q. (2014). Mesoporous niobium oxide spheres as an effective catalyst for the transamidation of primary amides with amines. Advanced Synthesis & Catalysis, 356, 475-484. DOI: 10.1002/adsc.201300717.10.1002/adsc.201300717Search in Google Scholar

Guo, Z. Q., Liu, Q., Wei, X. H., Zhang, Y. B., Tong, H. B., Chao, J. B., Guo, J. P., & Liu, D. S. (2013). 2-Aminopyrrolyl dilithium compounds: Synthesis, structural diversity, and catalytic activity for amidation of aldehydes with amines.Organometallics, 32, 4677-4683. DOI: 10.1021/om4006609.10.1021/om4006609Search in Google Scholar

Hoerter, J. M., Otte, K. M., Gellman, S. H., Cui, Q. A., & Stahl, S. S. (2008). Discovery and mechanistic study of AlIII-catalyzed transamidation of tertiary amides. Journal of the American Chemical Society, 130, 647-654. DOI: 10.1021/ja0762994.10.1021/ja0762994Search in Google Scholar PubMed

Iranpoor, N., Firouzabadi, H., Motevalli, S., & Talebi, M. (2013). Palladium-free aminocarbonylation of aryl, benzyl, and styryl iodides and bromides by amines using Mo(CO)6 and norbornadiene. Tetrahedron, 69, 418-426.DOI: 10.1016/j.tet.2012.10.002.10.1016/j.tet.2012.10.002Search in Google Scholar

Jegan, A., Ramasubbu, A., Saravanan, S., & Vasanthkumar, S. (2011). One-pot synthesis and characterization of biopolymer-iron oxide nanocomposite. International Journal of Nano Dimension, 2, 105-110.Search in Google Scholar

Kawagoe, Y., Moriyama, K., & Togo, H. (2013). Facile preparation of amides from carboxylic acids and amines with ion-supported Ph3P. Tetrahedron, 69, 3971-3977. DOI: 10.1016/j.tet.2013.03.021.10.1016/j.tet.2013.03.021Search in Google Scholar

Kunishima, M., Watanaba, Y., Terao, K., & Tani, S. (2004).Substrate-specific amidation of carboxylic acids in a liquid- liquid two phase system using cyclodextrins as inverse phasetransfer catalysts. European Journal of Organic Chemistry, 2004, 4535-4540. DOI: 10.1002/ejoc.200400470.10.1002/ejoc.200400470Search in Google Scholar

Lanigan, R. M., Starkov, P., & Sheppard, T. D. (2013). Direct synthesis of amides from carboxylic acids and amines using B(OCH2CF3)3. The Journal of Organic Chemistry, 78, 4512-4523. DOI: 10.1021/jo400509n.10.1021/jo400509nSearch in Google Scholar PubMed PubMed Central

Lundberg, H., Tinnis, F., Selander, N., & Adolfsson, H. (2014).Catalytic amide formation from non-activated carboxylic acids and amines. Chemical Society Reviews, 43, 2714-2742.DOI: 10.1039/c3cs60345h.10.1039/C3CS60345HSearch in Google Scholar

Oza, M., Meena, R., & Siddhanta, A. K. (2012). Facile synthesis of fluorescent polysaccharides: Cytosine grafted agarose and κ-carrageenan. Carbohydrate Polymers, 87, 1971-1979. DOI: 10.1016/j.carbpol.2011.10.004.10.1016/j.carbpol.2011.10.004Search in Google Scholar

Quan, Z. J., Xia, H. D., Zhang, Z., Da, Y. X., & Wang, X. C. (2014). Ligand-free CuTC-catalyzed N-arylation of amides, anilines and 4-aminoantipyrine: synthesis of Narylacrylamides, 4-amido-N-phenylbenzamides and 4-amino (N-phenyl)antipyrenes. Applied Organometallic Chemistry, 28, 81-85. DOI: 10.1002/aoc.3080.10.1002/aoc.3080Search in Google Scholar

Rao, S. N., Mohan, R. D., & Adimurthy, S. (2013). Lproline: An efficient catalyst for transamidation of carboxamides with amines. Organic Letters, 15, 1496-1499. DOI: 10.1021/ol4002625.10.1021/ol4002625Search in Google Scholar

Raphael, E., Avellaneda, C. O., Manzolli, B., & Pawlicka, A. (2010). Agar-based films for application as polymer electrolytes.Electrochimica Acta, 55, 1455-1459. DOI: 10.1016/ j.electacta.2009.06.010.10.1016/j.electacta.2009.06.010Search in Google Scholar

Rasheed, S., Rao, D. N., Reddy, A. S., Shankar, R., & Das, P. (2015). Sulphuric acid immobilized on silica gel (H2SO4- SiO2) as an eco-friendly catalyst for transamidation. RSC Advances, 5, 10567-10574. DOI: 10.1039/c4ra16571c.10.1039/C4RA16571CSearch in Google Scholar

Razavi, N., & Akhlaghinia, B. (2015). Cu(II) immobilized on aminated epichlorohydrin activated silica (CAES): as a new, green and efficient nanocatalyst for preparation of 5- substituted-1H-tetrazoles. RSC Advances, 5, 12372-12381.DOI: 10.1039/c4ra15148h.10.1039/C4RA15148HSearch in Google Scholar

Rhim, J. W. (2012). Physical-mechanical properties of agar/κ- carrageenan blend film and derived clay nanocomposite film.Journal of Food Science, 77, N66-N73. DOI: 10.1111/j.1750-3841.2012.02988.x.10.1111/j.1750-3841.2012.02988.xSearch in Google Scholar

Rossi, S. A., Shimkin, K. W., Xu, Q., Mori-Quiroz, L. M., & Watson, D. A. (2013). Selective formation of secondary amides via the copper-catalyzed cross-coupling of alkylboronic acids with primary amides. Organic Letters, 15, 2314-2317. DOI: 10.1021/ol401004r.10.1021/ol401004rSearch in Google Scholar

Ruiz-Méndez, M. V., Posada de la Paz, M., Abian, J., Calaf, R. E., Blount, B., Castro-Molero, N., Philen, R., & Gelpí, E. (2001). Storage time and deodorization temperature influence the formation of aniline-derived compounds in denatured rapeseed oils. Food and Chemical Toxicology, 39, 91-96. DOI: 10.1016/s0278-6915(00)00111-3.10.1016/S0278-6915(00)00111-3Search in Google Scholar

Sergeeva, M. V., Mozhaev, V. V., Rich, J. O., & Khmelnitsky, Y.L. (2000). Lipase-catalyzed transamidation of non-activated amides in organic solvent. Biotechnology Letters, 22, 1419-1422. DOI: 10.1023/a:1005621117392.10.1023/A:1005621117392Search in Google Scholar

Schley, N. D., Dobereiner, G. E., & Crabtree, R. H. (2011).Oxidative synthesis of amides and pyrroles via dehydrogenative alcohol oxidation by ruthenium diphosphine diamine complexes. Organometallics, 30, 4174-4179. DOI: 10.1021/om2004755.10.1021/om2004755Search in Google Scholar

Silveira, G., de Morais, A., Mendes Villis, P. C., Marchetti Maroneze, C., Gushikem, Y., Serpa Lucho, A. M., & Pissettia, F. L. (2012). Electrooxidation of nitrite on a silica-cerium mixed oxide carbon paste electrode. Journal of Colloid and Interface Science, 369, 302-308. DOI: 10.1016/j.jcis.2011.11.060.10.1016/j.jcis.2011.11.060Search in Google Scholar PubMed

Singh, D. P., Allam, B. K., Singh, K. M., & Singh, V. P. (2014). A binuclear Mn(II) complex as an efficient catalyst for transamidation of carboxamides with amines. RSC Advances, 4, 1155-1158. DOI: 10.1039/c3ra45176c.10.1039/C3RA45176CSearch in Google Scholar

Starkov, P., & Sheppard, T. D. (2011). Borate esters as conveninet reagents for direct amidation of carboxylic acids and transamidation of primary amides. Organic & Biomolecular Chemistry, 9, 1320-1323. DOI: 10.1039/c0ob01069c.10.1039/c0ob01069cSearch in Google Scholar PubMed

Stephenson, N. A., Zhu, J. A., Gellman, S. H., & Stahl, S. S. (2009). Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. Journal of the American Chemical Society, 131, 10003-10008. DOI: 10.1021/ja8094262.10.1021/ja8094262Search in Google Scholar PubMed

Tamura, M., Tonomura, T., Shimizu, K. i., & Satsuma, A. (2012). Transamidation of amides with amines under solventfree conditions using a CeO2 catalyst. Green Chemistry, 14, 717-724. DOI: 10.1039/c2gc16316k.10.1039/c2gc16316kSearch in Google Scholar

Tang, X. R., Chen, S. L., & Wang, L. (2012). Optimization and antifungal activity of chalcone analogues. Asian Journal of Chemistry, 24, 2516-2518.Search in Google Scholar

Wang, N. N., Zou, X. Y., Ma, J. A., & Li, F. (2014a).The direct synthesis of N-alkylated amides via a tandem hydration/N-alkylation reaction from nitriles, aldoximes and alcohols. Chemical Communications, 50, 8303-8305. DOI: 10.1039/c4cc02742f.10.1039/C4CC02742FSearch in Google Scholar PubMed

Wang, Y. H., Wang, F., Zhang, C. F., Zhang, J. A., Li, M.R., & Xu, J. (2014b). Transformylating amine with DMF to formamide over CeO2 catalyst. Chemical Communications, 50, 2438-2441. DOI: 10.1039/c3cc48400a.10.1039/c3cc48400aSearch in Google Scholar PubMed

Wu, Y., Geng, F. Y., Chang, P. R., Yu, J. G., & Ma, X. F. (2009). Effect of agarose on the microstructure and perfor mance of potato starch film. Carbohydrate Polymers, 76, 299-304. DOI: 10.1016/j.carbpol.2008.10.031.10.1016/j.carbpol.2008.10.031Search in Google Scholar

Yamansarova, E. T., Kukovinets, O. S., Zainullin, R. A., Galin, F. Z., & Abdullin, M. I. (2005). Synthesis of nitrogencontaining phenoxyacetic acid derivatives. Russian Journal of Organic Chemistry, 41, 546-550. DOI: 10.1007/s11178-005-0201-3.10.1007/s11178-005-0201-3Search in Google Scholar

Zahir, M. H. (2013). Synthesis and characterization of trivalent cerium complexes of p-tert-butylcalix[4,6,8]arenes: Effect of organic solvents. Journal of Chemistry, 2013, 494392. DOI: 10.1155/2013/494392.10.1155/2013/494392Search in Google Scholar

Zhang, M., Imm, S., Bähn, S., Neubert, L., Neumann, H., & Beller, M. (2012). Efficient copper(II) catalyzed transamidation of non-activated primary carboxamides and ureas with amines. Angewandte Chemie International Edition, 51, 3905-3909. DOI: 10.1002/anie.201108599.10.1002/anie.201108599Search in Google Scholar PubMed

Zhu, Y. H., Li, C. Z., Biying, A. O., Sudarmadji, M., Chen, A. G., Tuan, T. D., & Seayad, A. M. (2011). Stabilized well-dispersed Pd(0) nanoparticles for aminocarbonylation of aryl halides. Dalton Transactions, 40, 9320-9325. DOI: 10.1039/c1dt10927h. 10.1039/c1dt10927hSearch in Google Scholar PubMed

Received: 2015-2-25
Revised: 2015-5-31
Accepted: 2015-6-10
Published Online: 2015-9-1
Published in Print: 2015-9-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 18.5.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0168/html
Scroll to top button