Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 22, 2016

Electric fields in zeolites: fundamental features and environmental implications

  • Christopher J. Rhodes EMAIL logo
From the journal Chemical Papers

A critical review of zeolites and their use in practical applications is presented. Specifically-considered are their role as media for selective light-induced oxidations using molecular O2, and the relationship between this phenomenon and the surface electric fields that exist in zeolites. Methods for the determination of the strength of zeolite surface fields are discussed using sorbed molecules such as CO (with IR detection), spin-probes, di-tert-butyl nitroxide, and NO (measured using EPR spectroscopy). Relationship between the surface fields and molecular reorientation energetics for free radicals sorbed in zeolites, obtained using muonium as a spin-label, is explored. Finally, results obtained from exposing the naturally occurring zeolite, clinoptilolite, to high energy electrons as a means for activating materials toward selective removal of radioactive caesium and strontium cations from wastewaters of nuclear power plants are presented.


Presented at the XXV. International Conference on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, 31 May–5 June 2015.


References

Angell, C. L., & Schaffer, P. C. (1966). Infrared spectroscopic investigations of zeolites and absorbed molecules. II. Adsorbed carbon monoxide. The Journal of Physical Chemistry, 70, 1413–1418. DOI: 10.1021/j100877a012.10.1021/j100877a012Search in Google Scholar

Armbruster, T. (2001). Clinoptilotite-heulandite: applications and basic research. Studies in Surface Science and Catalysis, 135, 13–27. DOI: 10.1016/s0167-2991(01)81183-6.10.1016/s0167-2991(01)81183-6Search in Google Scholar

Barrer, R. M. (1978). Zeolites and clay minerals as sorbents and molecular sieves. London, UK: Academic Press.Search in Google Scholar

Berthier, G., Lemaire, H., Rassat, A., & Veillard, A. (1965). Interprétation structurale des spectres hyperffns" des radicaux libres et méthodes de chemie quantique. Theoretica Chimica Acta, 3, 213–230. DOI: 10.1007/bf00527717.10.1007/bf00527717Search in Google Scholar

Biglino, D., Li, H. T., Erickson, R., Lund, A., Yahiro, H., & Shiotani, M. (1999). EPR and ENDOR studies of NOx and Cu2+ in zeolites: bonding and diffusion. Physical Chemistry Chemical Physics, 1, 2887–2896. DOI: 10.1039/a809284b.10.1039/a809284bSearch in Google Scholar

Blatter, F., & Frei, H. (1993). Very strong stabilization of alkene-O2 charge-transfer state in zeolite NaY: red-lightinduced photooxidation of 2,3-dimethyl-2-butene. Journal of the American Chemical Society, 115, 7501–7502. DOI: 10.1021/ja00069a059.10.1021/ja00069a059Search in Google Scholar

Blatter, F., & Frei, H. (1994). Selective photooxidation of small alkenes by O2 with red light in zeolite Y. Journal of the American Chemical Society, 116, 1812–1820. DOI: 10.1021/ja00084a024.10.1021/ja00084a024Search in Google Scholar

Blatter, F., Moreau, F., & Frei, H. (1994). Diffuse reffectance spectroscopy of visible alkene-O2 charge-transfer absorptions in zeolite Y and determination of photooxygenation quantum effciencies. The Journal of Physical Chemistry, 98, 13403– 13407. DOI: 10.1021/j100101a046.10.1021/j100101a046Search in Google Scholar

Blatter, F., Sun, H., & Frei, H. (1995). Selective oxidation of propylene by O2 with visible light in a zeolite. Catalysis Letters, 35, 1–12. DOI: 10.1007/bf00806998.10.1007/bf00806998Search in Google Scholar

Blatter, F., Sun, H., & Frei, H. (1996). Highly selective formation of tert-butyl hydroperoxide from the reaction of isobutene and O2 in a zeolite under visible light. Chemistry a European Journal, 2, 385–389. DOI: 10.1002/chem.19960020406.10.1002/chem.19960020406Search in Google Scholar

Blatter, F., Sun, H., Vasenkov, S., & Frei, H. (1998). Photocatalyzed oxidation in zeolite cages. Catalysis Today, 41, 297– 309. DOI: 10.1016/s0920-5861(98)00021-2.10.1016/s0920-5861(98)00021-2Search in Google Scholar

Bordiga, S., Lamberti, C., Geobaldo, F., Zecchina, A., Turnes Palomino, G., & Otero Arean, C. (1995). Fourier-transform infrared study of CO adsorbed at 77 K on H-mordenite and alkali-metal-exchanged mordenites. Langmuir, 11, 527–533. DOI: 10.1021/la00002a027.10.1021/la00002a027Search in Google Scholar

Brown, P. J., Capiomont, A., Gillon, B., & Schweizer, J. (1983). Experimental spin density in nitroxides: A polarized neutron study of the tanol suberate. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 48, 753–761. DOI: 10.1080/00268978300100551.10.1080/00268978300100551Search in Google Scholar

Carrington, A., & McLachlan, A. D. (1979). Introduction to magnetic resonance: With applications to chemistry and chemical physics. London, UK: Chapman and Hall.Search in Google Scholar

Cejka, J., Corma, A., & Zones, S. (2010). Zeolites and catalysis: Synthesis, reactions and applications. Weinheim, Germany: Wiley.10.1002/9783527630295Search in Google Scholar

Clarke, J. K. A., Darcy, R., Hegarty, B. F., O‘Donoghue, E., Amir-Ebrahimi, V., & Rooney, J. J. (1986). Free radicals in dimethyl ether on H-ZSM-5 zeolite. A novel dimension of heterogeneous catalysis. Journal of the Chemical Society, Chemical Communications, 1986, 425–426. DOI: 10.1039/c39860000425.10.1039/c39860000425Search in Google Scholar

Cox, S. F. J. (1998). Muon spin relaxation studies of interstitial and molecular motion. Solid State Nuclear Magnetic Resonance, 11, 103–121. DOI: 10.1016/s0926-2040(97)00100-8.10.1016/s0926-2040(97)00100-8Search in Google Scholar

Cox, S. F. J., & Sivia, D. S. (1997). Spin-lattice relaxation in hyperffne-coupled systems: Applications to interstitial diffusion and molecular dynamics. Applied Magnetic Resonance, 12, 213–226. DOI: 10.1007/bf03162188.10.1007/bf03162188Search in Google Scholar

Cronstedt, A. F. (1756). Ron och beskriting om en obekant bärg ant, som kallas zeolites. Kungliga Svenska Vetenskapsakademiens Handlingar, Stockholm, 17, 120–123. (in Swedish)Search in Google Scholar

Doetschman, D. C., Dwyer, D. W., Fox, J. D., Frederick, C. K., Scull, S., Thomas, G. D., Utterback, S. G., & Wei, J. (1994). Physical characterization of the state of motion of the phenalenyl spin probe in cation-exchanged faujasite zeolite supercages. Chemical Physics, 185, 343–356. DOI: 10.1016/0301-0104(94)00126-x.10.1016/0301-0104(94)00126-xSearch in Google Scholar

Doetschman, D. C., & Thomas, G. D. (1998). Molecular motions of nitroxyl radical spin probes in X-zeolites. Dependence on zeolite cation and spin probe chemical functional group. Chemical Physics, 228, 103–114. DOI: 10.1016/s03010104(97)00329-7.10.1016/s03010104(97)00329-7Search in Google Scholar

Fleming, D. G., Shelley, M. Y., Arseneau, D. J., Senba, M., & Pan, J. J. (2002). Hyperffne and host–guest interactions of the Mu-cyclohexadienyl radical in NaY zeolite. The Journal of Physical Chemistry B, 106, 6395–6407. DOI: 10.1021/jp020378e.10.1021/jp020378eSearch in Google Scholar

Fleming, D. G., Arseneau, D. J., Shelley, M. Y., Beck, B., Dilger, H., & Roduner, E. (2011). SR studies of hyperffne couplings and molecular interactions of the Mucyclohexadienyl radical in Y-zeolites and in solid bulk benzene. The Journal of Physical Chemistry C, 115, 11177– 11191. DOI: 10.1021/jp202104u.10.1021/jp202104uSearch in Google Scholar

Fossey, J., Lefort, D., & Sorba, J. (1995). Free radicals in organic chemistry. Chichester, UK: Wiley.Search in Google Scholar

Frei, H., Blatter, F., & Sun, H. (1996). Oxidizing hydrocarbons by O2 at high selectivity. CHEMTECH, 26(6), 24–30.Search in Google Scholar

Frei, H. (2006). Selective hydrocarbon oxidation in zeolites. Science, 313, 309–310. DOI: 10.1126/science.1128981.10.1126/science.1128981Search in Google Scholar

Froese, C. (1966). Hartree–Fock parameters for the atoms helium to radon. The Journal of Chemical Physics, 45, 1417– 1420. DOI: 10.1063/1.1727776.10.1063/1.1727776Search in Google Scholar

Gardner, C. L., & Weinberger, M. A. (1970). Electron spin resonance spectra of nitric oxide adsorbed on zeolites. Canadian Journal of Chemistry, 48, 1317–1322. DOI: 10.1139/v70-216.10.1139/v70-216Search in Google Scholar

Ghatlia, N. D., & Turro, N. J. (1991). Diastereoselective induction in radical coupling reactions: photolysis of 2,4diphenylpentan-3-ones adsorbed on faujasite zeolites. Journal of Photochemistry and Photobiology A: Chemistry, 57, 7–19. DOI: 10.1016/1010-6030(91)85003-y.10.1016/1010-6030(91)85003-ySearch in Google Scholar

Gutjahr, M., Pöppl, A., Böhlmann, W., & Bottcher, R. (2001). Electron pair acceptor properties of alkali cations in zeolite Y: an electron spin resonance study of adsorbed di-tertbutyl nitroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 189, 93–101. DOI: 10.1016/s09277757(01)00605-7.10.1016/s09277757(01)00605-7Search in Google Scholar

Harris, R. K. (1983). Nuclear magnetic resonance spectroscopy. Melbourne, FL, USA: Pitman.Search in Google Scholar

Hashimoto, S. (2003). Zeolite photochemistry: impact of zeolites on photochemistry and feedback from photochemistry to zeolite science. Photochemistry and Photobiology C: Photochemistry Reviews, 4, 19–49. DOI: 10.1016/s13895567(03)00003-0.10.1016/s13895567(03)00003-0Search in Google Scholar

Herman, F., & Skillman, S. (1963). Atomic structure calculations. Englewood Cliffs, NJ, USA: Prentice-Hall.Search in Google Scholar

Hightower, J. W., & van Leirsberg, D. A. (1975). Current status of the catalytic decomposition of NO. In R. L. Klimisch, & J. G. Larson (Eds.), The catalytic chemistry of nitrogen oxides (pp. 63–93). New York, NY, USA: Plenum Press. DOI: 10.1007/978-1-4615-8741-55.10.1007/978-1-4615-8741-55Search in Google Scholar

Holloway, A. M., & Wayne, R. P. (2010). Atmospheric chemistry. Cambridge, UK: Royal Society of Chemistry.10.1039/9781839168628Search in Google Scholar

Iwamoto, M., Yokoo, S., Sasaki, K., & Kagawa, S. (1981). Catalytic decomposition of nitric oxide over copper(II)exchanged Y-type zeolites. Journal of the Chemical Society, Faraday Transactions 1, 77, 1629–1638. DOI: 10.1039/f19817701629.10.1039/f19817701629Search in Google Scholar

Kärger, J., & Ruthven, D. M. (1992). Diffusion in zeolites and other microporous solids. New York, NY, USA: Wiley.Search in Google Scholar

Khodakov, A. Yu., Kustov, L. M., Kazansky, V. B., & Williams, C. (1992). Infrared spectroscopic study of the interactions of cations in zeolites with simple molecular probes. Part 2.– Adsorption and polarization of molecular hydrogen on zeolites containing polyvalent cations. Journal of the Chemical Society, Faraday Transactions, 88, 3251–3253. DOI: 10.1039/ft9928803251.10.1039/ft9928803251Search in Google Scholar

Knözinger, H., & Huber, S. (1998). IR spectroscopy of small and weakly interacting molecular probes for acidic and basic zeolites. Journal of the Chemical Society, Faraday Transactions, 94, 2047–2059. DOI: 10.1039/a802189i.10.1039/a802189iSearch in Google Scholar

Koshland, D. E., Jr. (1992). The molecule of the year. Science, 258, 1861. DOI: 10.1126/science.1470903.10.1126/science.1470903Search in Google Scholar

Laszlo, P. (1987). Chemical reactions on clays. Science, 235, 1473–1477. DOI: 10.1126/science.235.4795.1473.10.1126/science.235.4795.1473Search in Google Scholar

Li, P., Xiang, Y., Grassian, V. H., & Larsen, S. C. (1999). CO adsorption as a probe of acid sites and the electric field in alkaline earth exchanged zeolite Beta using FT-IR and ab initio quantum calculations. The Journal of Physical Chemistry B. 103, 5058–5062. DOI: 10.1021/jp9902093.10.1021/jp9902093Search in Google Scholar

Lund, A., & Rhodes, C. J. (1985). Radicals on surfaces. Dordrecht, The Netherlands: Kluwer.Search in Google Scholar

Manoilova, O. V., Penãrroya Mentruit, M., Turnes Palomino, G., Tsyganenko, A. A., & Otero Areán, C. (2001). Variable temperature infrared spectrometry of carbon monoxide adsorbed on the zeolite K-ZSM-5. Vibrational Spectroscopy, 26, 107–111. DOI: 10.1016/s0924-2031(01)00104-7.10.1016/s0924-2031(01)00104-7Search in Google Scholar

Mattar, S. M., & Stephens, A. D. (2001). Solvent dependence of the di-tert-butyl nitroxide (DTBN) hyperffne tensors: an experimental and computational study. Chemical Physics Letters, 347, 189–198. DOI: 10.1016/s0009-2614(01)01029-6.10.1016/s0009-2614(01)01029-6Search in Google Scholar

Morton, J. R., & Preston, K. F. (1978). Atomic parameters for paramagnetic resonance data. Journal of Magnetic Resonance, 30, 577–582. DOI: 10.1016/0022-2364(78)90284-6.10.1016/0022-2364(78)90284-6Search in Google Scholar

Mossoba, M. M., Makino, K., Riesz, P., & Perkins, R. C., Jr. (1984). Long-range proton hyperffne coupling in alicyclic nitroxide radicals by resolution-enhanced electron paramagnetic resonance. The Journal of Physical Chemistry, 88, 4717–4723. DOI: 10.1021/j150664a055.10.1021/j150664a055Search in Google Scholar

Mumpton, F. A. (1999). La roca magica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences of the United States of America, 96, 3463–3470. DOI: 10.1073/pnas.96.7.3463.10.1073/pnas.96.7.3463Search in Google Scholar PubMed PubMed Central

Pacchioni, G., Cogliandro, G., & Bagus, P. S. (1992). Molecular orbital cluster model study of bonding and vibrations of CO adsorbed on MgO surface. International Journal of Quantum Chemistry, 42, 1115–1139. DOI: 10.1002/qua.560420504.10.1002/qua.560420504Search in Google Scholar

Panov, A. G., Larsen, R. G., Totah, N. I., Larsen, S. C., & Grassian, V. H. (2000). Photooxidation of toluene and p-xylene in cation-exchanged zeolites X, Y, ZSM-5, and Beta: The role of zeolite physicochemical properties in product yield and selectivity. The Journal of Physical Chemistry B, 104, 5706–5714. DOI: 10.1021/jp000831r.10.1021/jp000831rSearch in Google Scholar

Pöppl, A., Gutjahr, M., & Rudolf, T. (2004). Paramagnetic absorption complexes in zeolites as studied by advanced electron paramagnetic resonance techniques. In R. Haberlandt, D. Michel, A. Pöppl, & R. Stannarius (Eds.), Molecules in interaction with surfaces and interfaces (Lecture Notes in Physics, Vol. 634, pp. 185–215). Heidelberg, Germany: Springer. DOI: 10.1007/978-3-540-40024-05.10.1007/978-3-540-40024-05Search in Google Scholar

Rhodes, C. J. (1992). Direct EPR evidence for Si dπ-pπ bonding in silylamine radical cations. Journal of the Chemical Society, Perkin Transactions 2, 1992, 235–241. DOI: 10.1039/p29920000235.10.1039/p29920000235Search in Google Scholar

Rhodes, C. J., Reid, I. D., & Roduner, E. (1993). First direct observation of neutral organic radicals in a zeolite at ambient temperature. Journal of the Chemical Society, Chemical Communications, 1993, 512–513. DOI: 10.1039/c39850000512.10.1039/c39850000512Search in Google Scholar

Rhodes, C. J., Butcher, E. C., Morris, H., & Reid, I. D. (1995). Mobility of radicals in zeolite catalysts: Molecular motion studied by muon spectroscopy. Magnetic Resonance in Chemistry, 33, S134–S146. DOI: 10.1002/mrc.1260331321.10.1002/mrc.1260331321Search in Google Scholar

Rhodes, C. J., Hinds, C. S., & Reid, I. D. (1996). Muonium adduct of benzaldehyde: a novel probe of cation–molecule interactions in zeolite catalysts and of solvation and electronic substituent effects. Journal of the Chemical Society, Faraday Transactions, 92, 4265–4269. DOI: 10.1039/ft9969204265.10.1039/ft9969204265Search in Google Scholar

Rhodes, C. J., Reid, I. D., & Jackson, R. A. (1997). Muonium adducts of benzaldehyde: Structural correlation with nitroxides. Hyperffne Interactions, 106, 193–201. DOI: 10.1023/a:1012602226981.10.1023/a:1012602226981Search in Google Scholar

Rhodes, C. J., Dintinger, T. C., & Scott, C. A. (2000a). Sorption of benzene in cation-exchanged zeolite X, as measured by longitudinal field muon spin relaxation (LF-MuSRx). Magnetic Resonance in Chemistry, 38, 729–737. DOI: 10.1002/1097-458X(200009)38:9<729::AID-MRC701>3.0.CO;2-B.10.1002/1097-458X(200009)38:9<729::AID-MRC701>3.0.CO;2-BSearch in Google Scholar

Rhodes, C. J., Dintinger, T. C., & Scott, C. A. (2000b). Rates of motion for free radicals in zeolites as directly measured by longitudinal field muon relaxation. Magnetic Resonance in Chemistry, 38, 62–65. DOI: 10.1002/(SICI)1097-458X(200001)38:1<62::AID-MRC612>3.0.CO;2-6.10.1002/(SICI)1097-458X(200001)38:1<62::AID-MRC612>3.0.CO;2-6Search in Google Scholar

Rhodes, C. J., Dintinger, T. C., Reid, I. D., & Scott, C. A. (2000c). Spin-labelling studies of benzene sorbed in carbon particles using muonium: a molecular view of sorption by environmental carbons. Magnetic Resonance in Chemistry, 38, S58–S64. DOI: 10.1002/1097-458X(200006)38:13<::AID-MRC700>3.0.CO;2-G.10.1002/1097-458X(200006)38:13<::AID-MRC700>3.0.CO;2-GSearch in Google Scholar

Rhodes, C. J. (2005). Reactive radicals on reactive surfaces: Heterogeneous processes in catalysis and environmental pollution control. Progress in Reaction Kinetics and Mechanism, 30, 145–213. DOI: 10.3184/007967405779134038.10.3184/007967405779134038Search in Google Scholar

Rhodes, C. J. (2006). Studies of radio-labelled free radicals derived from a VOC (volatile organic compound), benzaldehyde, adsorbed in cation-exchanged zeolite X. Progress in Reaction Kinetics and Mechanism, 31, 139–158. DOI: 10.3184/146867806x197106.10.3184/146867806x197106Search in Google Scholar

Rhodes, C. J. (2007). Zeolites: physical aspects and environmental applications. Annual Reports on the Progress of Chemistry Section C: Physical Chemistry, 103, 287–325. DOI: 10.1039/b605702k.10.1039/b605702kSearch in Google Scholar

Rhodes, C. J. (2008). Zeolite mediated reactions: Mechanistic aspects and environmental applications. Progress in Reaction Kinetics and Mechanism, 33, 1–79. DOI: 10.3184/146867807x272994.10.3184/146867807x272994Search in Google Scholar

Rhodes, C. J. (2010a). Spectroscopic characterisation of molecules adsorbed at zeolite surfaces. Annual Reports on the Progress of Chemistry Section C: Physical Chemistry, 106, 36–76. DOI: 10.1039/b903505m.10.1039/b903505mSearch in Google Scholar

Rhodes, C. J. (2010b). Properties and applications of zeolites. Science Progress, 93, 223–284. DOI: 10.3184/003685010x12800828155007.10.3184/003685010x12800828155007Search in Google Scholar PubMed

Rhodes, C. J. (2011). Electron spin resonance. Part 1: A diagnostic method in the biomedical sciences. Science Progress, 94, 16–96. DOI: 10.3184/003685011x12982218769939.10.3184/003685011x12982218769939Search in Google Scholar

Rhodes, C. J., & Dintinger, T. C. (2011). Radiolabelling measurements of free radicals derived from aromatic volatile organic compounds adsorbed in zeolite nanomaterials to and above saturation loadings. Progress in Reaction Kinetics and Mechanism, 36, 287–322. DOI: 10.3184/146867811x13177993978554.10.3184/146867811x13177993978554Search in Google Scholar

Rhodes, C. J. (2012). Muonium–the second radioisotope of hydrogen: A remarkable and unique radiotracer in the chemical, materials, biological and environmental sciences. Science Progress, 95, 101–174. DOI: 10.3184/003685012x13336424471773.10.3184/003685012x13336424471773Search in Google Scholar PubMed

Rhodes, C. J., & Dintinger, T. C. (2012). Radiation effects on zeolite nanomaterials – some potential implications for cleaning liquid nuclear waste and for enhanced radioactive decontamination. Progress in Reaction Kinetics and Mechanism, 37, 103–137. DOI: 10.3184/146867812x1332352125519.10.3184/146867812x1332352125519Search in Google Scholar

Rhodes, C. J. (2014). Unpaired electrons as probes of catalytic systems. Science Progress, 97, 303–370. DOI: 10.3184/003685014x14151169734173.10.3184/003685014x14151169734173Search in Google Scholar PubMed

Rudolf, T., Pöppl, A., Hofbauer, W., & Michel, D. (2001). X, Q and W band electron paramagnetic resonance study of the sorption of NO in Na-A and Na-ZSM-5 zeolites. Physical Chemistry Chemical Physics, 3, 2167–2173. DOI: 10.1039/b100764p.10.1039/b100764pSearch in Google Scholar

Sherman, J. D. (1999). Synthetic zeolites and other microporous oxide molecular sieves. Proceedings of the National Academy of Sciences of the United States of America, 96, 3471–3478. DOI: 10.1073/pnas.96.7.3471.10.1073/pnas.96.7.3471Search in Google Scholar

Sun, H., Blatter, F., & Frei, H. (1994). Selective oxidation of toluene to benzaldehyde by O2 with visible light in barium (2+) and calcium (2+)-exchanged zeolite Y. Journal of the American Chemical Society, 116, 7951–7952. DOI: 10.1021/ja00096a084.10.1021/ja00096a084Search in Google Scholar

Sun, H., Blatter, F., & Frei, H. (1996). Cyclohexanone from cyclohexane and O2 in a zeolite under visible light with complete selectivity. Journal of the American Chemical Society, 118, 6873–6879. DOI: 10.1021/ja953273g.10.1021/ja953273gSearch in Google Scholar

Sun, H., Blatter, F., & Frei, H. (1997). Oxidation of propane to acetone and of ethane to acetaldehyde by O2 in zeolites with complete selectivity. Catalysis Letters, 44, 247–253. DOI: 10.1023/a:1018957915902.10.1023/a:1018957915902Search in Google Scholar

Townsend, R. P. (1980). The properties and applications of zeolites (Special publication). London, UK: Chemical Society.Search in Google Scholar

Ulbricht, K., & Koehler, P. (1985). Charakterisierung Lewissaurer Zentren an Zeolithen mit Hilfe der EPR-Spektren von adsorbiertem Di-tert-butyl-nitroxid. Zeitschrift für Chemie, 25, 253–254. DOI: 10.1002/zfch.19850250709.10.1002/zfch.19850250709Search in Google Scholar

Uppili, S., Thomas, K. J., Crompton, E. M., & Ramamurthy, V. (2000). Probing zeolites with organic molecules: Supercages of X and Y zeolites are superpolar. Langmuir, 16, 265–274. DOI: 10.1021/la990392r.10.1021/la990392rSearch in Google Scholar

Vasenkov, S., & Frei, H. (1998). Time-resolved FT-infrared spectroscopy of visible light-induced alkene oxidation by O2 in a zeolite. The Journal of Physical Chemistry B, 102, 8177– 8182. DOI: 10.1021/jp981035c.10.1021/jp981035cSearch in Google Scholar

Volodin, A., Biglino, D., Itagaki, Y., Shiotani, M., & Lund, A. (2000). ESR study of monomer and triplet state dimer NO adsorbed on sulfated zirconia. Chemical Physics Letters, 327, 165–170. DOI: 10.1016/s0009-2614(00)00856-3.10.1016/s0009-2614(00)00856-3Search in Google Scholar

Wang, S. X., Wang, L. M., & Ewing, R. C. (2000). Electron and ion irradiation of zeolites. Journal of Nuclear Materials, 278, 233–241. DOI: 10.1016/s0022-3115(99)00246-9.10.1016/s0022-3115(99)00246-9Search in Google Scholar

Wang, L. M., Chen, J., & Ewing, R. C. (2004). Radiation and thermal effects on porous and layer structured materials as getters of radionuclides. Current Opinion in Solid State and Materials Science, 8, 405–418. DOI: 10.1016/j.cossms.2005.04.002.10.1016/j.cossms.2005.04.002Search in Google Scholar

Yahiro, H., Lund, A., & Shiotani, M. (2004). Nitric oxide adsorbed on zeolites: EPR studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60, 1267–1278. DOI: 10.1016/j.saa.2003.10.045.10.1016/j.saa.2003.10.045Search in Google Scholar PubMed

Yeritsyan, H., Sahakyan, A. A., Harutyunyan, V. V., Nikoghosyan, S. K., Hakhverdyan, E. A., Grigoryan, N. E., Hovhannisyan, A., Atoyan, V. A., Keheyan, Y., & Rhodes, C. J. (2013). Radiation-modiffed natural zeolites for cleaning liquid nuclear waste (irradiation against radioactivity). Nature Scientiffc Reports, 3, 2900. DOI: 10.1038/srep02900.10.1038/srep02900Search in Google Scholar PubMed PubMed Central

Received: 2015-3-16
Revised: 2015-5-7
Accepted: 2015-5-11
Published Online: 2016-1-22
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0160/html
Scroll to top button