Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 26, 2015

Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry

  • Beata Messyasz , Boguslawa Leska , Joanna Fabrowska , Marta Pikosz , Edward Roj , Adam Cieslak and Grzegorz Schroeder
From the journal Open Chemistry

Abstract

This study was undertaken to determine mineral content, amino acid and fatty acid composition of the freshwater macroalga – Cladophora glomerata. The studies were based on the content comparison in algal biomass collected from a lake and cultured in a laboratory. To determine the ability of copper cumulating by macroalgae, Cladophora was cultured in the medium supplemented with Cu ions. This study indicated that the relative abundance of metals in filaments decreased in the following order: Ca > K > Mg > Na > Fe > Cu > Zn > Pb > As > Ni > Cd > Mn > Cr > Co. Total protein content ranged from 14.45% in Cladophora from a lake to 26.55% in Cladophora from a laboratory. The main amino acids analyzed were aspartic and glutamic acid. The fatty acid content in the dry matter of the extract varied depending on the extraction method used: ethylene alcohol (19.0%), acetone (34.5%) or supercritical fluid extraction (62.5%). Freshwater C. glomerata due to the macrominerals, trace elements, amino and fatty acids composition in the extracts can be a valuable resource for nutritional and cosmetic applications.

Graphical Abstract

References

Search in Google Scholar

[1] Higgins S.N., Malkin S.Y., Todd Howell E., Guildford S.J., Campbell L., Hiriart-Baer V., Heckey R.E., An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes, J. Phycol., 2008, 44, 839-854. 10.1111/j.1529-8817.2008.00538.xSearch in Google Scholar

[2] Messyasz B., Rybak A., Abiotic factors affecting the development of Ulva sp. (Ulvophyceae, Chlorophyta) in freshwater ecosystems, Aquatic Ecol., 2011, 45, 75-87. 10.1007/s10452-010-9333-9Search in Google Scholar

[3] Messyasz B., Rybak A., Pikosz M., Szendzina L., Fertility effects on Ulva thalli mass development in inland waters of Poland, Biol. Animală, 2013, 69-82. 10.5586/asbp.2013.013Search in Google Scholar

[4] Schroeder G., Messyasz B., Leska B., Fabrowska J., Pikosz M., Rybak A., Biomass of freshwater algae as raw material for the industry and agriculture. Przem. Chem. 92, 1380-1384, (in Polish). Search in Google Scholar

[5] Hossain A.B.M.S., Salleh A., Boyce A.N., Chowdhury P., Naqiuddin M., Biodiesel Fuel Production from Algae as Renewable Energy, Am. J. of Biochem. and Biotech., 2008, 4, 250-254. 10.3844/ajbbsp.2008.250.254Search in Google Scholar

[6] Kumar P., Suseela M.R., Toppo K., Physico-Chemical Characterization of Algal oil: a Potential Biofuel. Asian J. Exp. Biol. Sci., 2011, 2, 493-497. Search in Google Scholar

[7] Khala G., Ghazala B., Biodiesel production from algae, Pak. J. Bot., 2012, 44, 379-381. Search in Google Scholar

[8] Gao K., McKinley K.R., Use of macroalgae for marine biomass production and CO2 remediation- a review, J. Appl. Phycol., 1994, 6, 45-60. 10.1007/BF02185904Search in Google Scholar

[9] Sauze F., Icreasing the productivity of macroalgae by the action of a variety of factors, In: Stub A., Chartier A., Schleser P., Schleser G. (Eds.), Energy from Biomass, Elsevier Applied Science, London, 1983. Search in Google Scholar

[10] Carballeira N.M., Sostre A., Stefanov K., Popov S., Kujumgiev A., Dimitrova-Konaklieva S., Tosteson C.G., Tosteson T.R., The fatty acid composition of a vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexadecenoic acid, Lipids, 1997, 32, 1271-1275. 10.1007/s11745-006-0163-4Search in Google Scholar

[11] Heiba H.I., Al-Easa H.S., Rizk A.F.M., Fatty acid composition of twelve algae from the coastal zones of Qatar, Plant Food Hum. Nutr., 1997, 51, 27-34. 10.1023/A:1007980227542Search in Google Scholar

[12] Horincar V.B., Parfene G., Tyagi A.K., Gottardi D., Dinică R., Guerzoni M.E., Bahrim G., Extraction and characterization of volatile compounds and fatty acids from red and green macroalgae from the Romanian Black Sea in order to obtain valuable bioadditives and biopreservatives, J. Appl. Phycol., 2014, 26, 551-559. 10.1007/s10811-013-0053-0Search in Google Scholar

[13] Elenkov I., Georgieva T., Hadjieva P., Dimitrova-Konaklievat S., Popov S., Terpenoids and sterols in Cladophora vagabunda, Phytochemistry, 1995, 38, 457-459. 10.1016/0031-9422(94)00704-WSearch in Google Scholar

[14] Soltani S., Saadatmand S., Khavarinejad R., Nejadsattari T., Antioxidant and antibacterial activities of Cladophora glomerata (L.) Kütz in Caspian Sea Coast, Iran, Afr. J. Biotechnol., 2011, 10, 7684-7689. Search in Google Scholar

[15] Khuantrairong T., Traichaiyaporn S., Enhancement of carotenoid and chlorophyll content of an edible freshwater alga (Kai: Cladophora sp.) by supplementary inorganic phosphate and investigation of its biomass production, Maejo Int. J. Sci. Technol., 2012, 6, 1-11. Search in Google Scholar

[16] Khuantrairong T., Traichaiyaporn S., The nutritional value of edible freshwater alga Cladophora sp. (Chlorophyta) grown under different phosphorus concentrations, Int. J. Agric. Biol., 2011, 13, 297-300. Search in Google Scholar

[17] Rani G., Changes in protein profile and amino acids in Cladophora vagabunda (Chlorophyceae) in response to salinity stress, J. Appl. Phycol., 2007, 19, 803-807. 10.1007/s10811-007-9211-6Search in Google Scholar

[18] Khalid M.N., Shameel M., Ahmad V.U., The bioactivity and phycochemistry of two species of Cladophora (Siphonocladophyceae) from Sindh, Proceedings of the Pakistan Academy of Sciences, 2012, 49, 113-121. Search in Google Scholar

[19] Verdel E.F., Kline P.C., Wani S., Woods A.E., Purification and partial characterization of haloperoxidase from fresh water algae Cladophora glomerata, Comp. Biochem. Physiol. B., 2000, 125, 179-187. 10.1016/S0305-0491(99)00168-6Search in Google Scholar

[20] Lee Y.C., Chang S.P., The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae, Bioresour. Technol., 2011, 102, 5297-5304. 10.1016/j.biortech.2010.12.103Search in Google Scholar

[21] Rybak A., Messyasz B., Leska B., The accumulation of metal (Co, Cr, Cu, Mn and Zn) in freshwater Ulva (Chlorophyta) and its habitat, Ecotoxicology, 2013, 22, 558-573. 10.1007/s10646-013-1048-ySearch in Google Scholar

[22] Deng L., Zhang Y., Qin J., Wang X., Zhu X., Biosorption of Cr (VI) from aqueous solutions by nonliving green algae Cladophora albida, Miner. Eng., 2009, 22, 372-377. 10.1016/j.mineng.2008.10.006Search in Google Scholar

[23] Deng L., Su Y., Su H., Wang X., Zhu X., Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis, J. Hazard. Mater., 2007, 143, 220-225. 10.1016/j.jhazmat.2006.09.009Search in Google Scholar

[24] Sternberg S.P.K., Dorn R.W., Cadmium removal using Cladophora in batch, semi-batch and flow reactors, Bioresour. Technol., 2002, 81, 249-255. 10.1016/S0960-8524(01)00131-6Search in Google Scholar

[25] Tuzen M., Sari A., Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies, Chem. Eng. J., 2010, 158, 200-206. 10.1016/j.cej.2009.12.041Search in Google Scholar

[26] Ji L., Xie S., Feng J., Li Y., Chen L., Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta, J. Appl. Phycol., 2012, 24, 979-983. 10.1007/s10811-011-9721-0Search in Google Scholar

[27] Deng L., Su Y., Su H., Wang X., Zhu X., Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: Equilibrium, kinetics and environmental effects, Adsorption, 2006, 12, 267-277. 10.1007/s10450-006-0503-ySearch in Google Scholar

[28] Deng L., Zhu X., Wang X., Su Y., Su H., Biosorption of copper (II) from aqueous solutions by green alga Cladophora fascicularis, Biodegradation, 2007, 18, 393-402. 10.1007/s10532-006-9074-6Search in Google Scholar PubMed

[29] Aksu Z., Kutsal T., Determination of kinetic parameters in the biosorption of copper (II) on Cladophora sp., in a packed bed column reactor, Process Biochem., 1998, 33, 7-13. 10.1016/S0032-9592(97)00052-6Search in Google Scholar

[30] Ozer A., Ozer D., Ekiz H.I., The equilibrium and kinetic modelling of the biosorption of copper (II) ions on Cladophora crispate, Adsorption, 2004, 10, 317-326. 10.1007/s10450-005-4817-ySearch in Google Scholar

[31] Andersen R.A., Algal culturing techniques, Elsevier Academic Press, London, 2005. Search in Google Scholar

[32] AOAC, Horwitz W., Latimer W., Association of Official Analytical Chemists, Official Methods of Analysis, 18th Edition, Gaithersburg Maryland, USA, 2007. Search in Google Scholar

[33] Mendes R.L., Nobre B.P., Cardoso M.T., Pereira A.P., Palavra A.F., Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae, Inorga Chim Acta, 2003, 356, 328-334. 10.1016/S0020-1693(03)00363-3Search in Google Scholar

[34] Roj E., Dobrzynska-Inger A., Grzeda K., Kostrzewa D., Supercritical extraction of plant materials, Przem. Chem., 2013, 92, 1358-1363 (in Polish). Search in Google Scholar

[35] Kostrzewa D., Dobrzynska-Inger A., Roj E., Experimental data on xanthohumol solubility in supercritical dioxide, Fluid Phase Equilibria, 2013, 360, 445-450. 10.1016/j.fluid.2013.10.001Search in Google Scholar

[36] Nechev J., Ivanova A., Khotimchenko S., Boytcheva E., Dimitrova-Konaklieva S., Popov S., Stefanov K., Lipid changes in the freshwater macroalga Cladophora glomerata (L.) Kütz. (Chlorophyta) after lead treatment, C. R. Acad. Bulgare Sci., 2003, 56, 71-76. Search in Google Scholar

[37] Tabarasa M., Rezaei M., Ramezanpour Z., Waaland J.R., Rabiei R., Fatty acids, amino acids, mineral contents, and proximate composition of some brown seaweeds, J. Phycol., 2012, 48, 285-292. 10.1111/j.1529-8817.2012.01122.xSearch in Google Scholar

[38] Horincar V.B., Parfene G., Tyagi A.K., Gottardi D., Dinica R., Guerzoni M.E., Bahrim G., Extraction and characterization of volatile compounds and fatty acids from red and green macroalgae from the Romanian Black Sea in order to obtain valuable bioadditives and biopreservatives, J. Appl. Phycol., 2014, 26, 551-559. 10.1007/s10811-013-0053-0Search in Google Scholar

[39] Elenkov I., Stefanov K., Dimitrova-Konaklievat S., Popov S., Effect of salinity on lipid composition of Cladophora vagabunda, Phytochemistry, 1996, 39-44. 10.1016/0031-9422(95)00857-8Search in Google Scholar

[40] Pereira H., Barreira L., Figuieredo F., Custódio L., Vizetto-Duarte C., Polo C., Rešek E., Engelen A., Varela J., Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications, Mar. Drugs, 2012, 10, 1920-1935. 10.3390/md10091920Search in Google Scholar

[41] Grierson S., Strezov V., Bray S., Mummacari R., Danh L.T., Foster N., Assessment of Bio-oil Extraction from Tetraselmis chui Microalgae Comparing Supercritical CO2, Solvent Extraction, and Thermal Processing, Energy Fuels, 2012, 26, 248-255. 10.1021/ef2011222Search in Google Scholar

[42] Medina A.R., Grima E.M., Gimenez A.G., Ibanez M.J., Downstream processing of algal polyunsaturated fatty acids, Biotechnology Advances, 1998, 16, 517-580. 10.1016/S0734-9750(97)00083-9Search in Google Scholar

[43] Halim R., Danquah M.K., Webley P.A., Extraction of oil from microalgae for biodiesel production: A review, Biotechnology Advances, 2012, 30, 709-732. 10.1016/j.biotechadv.2012.01.001Search in Google Scholar PubMed

[44] Sahena F., Zaidul I.S.M., Jinap S., Karim A.A., Abbasa K.A., Norulaini N.A.N., Omar A.K.M., Application of supercritical CO2 in lipid extraction – A review, J. Food Engin., 2009, 95, 240-253. 10.1016/j.jfoodeng.2009.06.026Search in Google Scholar

[45] Ibañez E., Herrero M., Mendiola J.A., Castro-Puyana M., Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates, In: Hayes M., Springer U.S. (Eds.), Marine bioactive compounds: sources, characterization and applications, New York, 2012. Search in Google Scholar

[46] Klejdus B., Lojkova L., Plaza M., Snoblova M., Sterbova D., Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry, J. Chromatogr., 2010, 1217, 7956-7965. 10.1016/j.chroma.2010.07.020Search in Google Scholar PubMed

Received: 2015-2-12
Accepted: 2015-6-12
Published Online: 2015-8-26

© 2015 Beata Messyasz et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0124/html
Scroll to top button