Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 30, 2014

Non-thermal plasma treatment induces MAPK signaling in human monocytes

  • Lena Bundscherer , Stefanie Nagel , Sybille Hasse , Helena Tresp , Kristian Wende , Reinhard Walther , Stephan Reuter , Klaus-Dieter Weltmann , Kai Masur and Ulrike Lindequist
From the journal Open Chemistry

Abstract

The application of non-thermal atmospheric pressure plasma raises a hope for the new wound healing strategies. Next to its antibacterial effect it is known to stimulate skin cells. However, monocytes are also needed for the complex process of a wound healing. This study investigates the impact of plasma on the intracellular signaling events in the primary human monocytes. The proliferative MEK-ERK (MAPK/ERK kinase-extracellular signal-regulated kinase) pathway was activated by short plasma treatment times. In contrast, an induction of the apoptotic JNK (c-Jun N-terminal kinase) cascade as well as activation of caspase 3 were observed after long plasma exposure. These findings indicate that monocytes can be differentially stimulated by plasma treatment and may contribute to the proper wound recovery.

Graphical Abstract

References

[1] Heinlin J., Isbary G., Stolz W., Morfill G., Landthaler M., Shimizu T., et al., Plasma applications in medicine with a special focus on dermatology, J. Eur. Acad. Dermatol. Venereol., 2011, 25, 1-11 10.1111/j.1468-3083.2010.03702.xSearch in Google Scholar PubMed

[2] Weltmann K. D., Polak M., Masur K., von Woedtke T., Winter J., Reuter S., Plasma processes and plasma sources in medicine, Contrib. Plasma Phys., 2012, 52, 644-654 10.1002/ctpp.201210061Search in Google Scholar

[3] Koban I., Holtfreter B., Hubner N. O., Matthes R., Sietmann R., Kindel E., et al., Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment, J. Clin. Periodontol., 2011, 38, 956-65 10.1111/j.1600-051X.2011.01740.xSearch in Google Scholar PubMed

[4] Oehmigen K., Winter J., Hahnel M., Wilke C., Brandenburg R., Weltmann K. D., et al., Estimation of possible mechanisms of escherichia coli inactivation by plasma treated sodium chloride solution, Plasma Process. Polym., 2011, 8, 904-913 10.1002/ppap.201000099Search in Google Scholar

[5] Polak M., Winter J., Schnabel U., Ehlbeck J., Weltmann K. D., Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical applications, Plasma Process. Polym., 2012, 9, 67-76 10.1002/ppap.201000163Search in Google Scholar

[6] Fricke K., Koban I., Tresp H., Jablonowski L., Schroder K., Kramer A., et al., Atmospheric pressure plasma: A highperformance tool for the efficient removal of biofilms, PLoS ONE, 2012, 7, e42539 10.1371/journal.pone.0042539Search in Google Scholar PubMed PubMed Central

[7] Isbary G., Morfill G., Schmidt H. U., Georgi M., Ramrath K., Heinlin J., et al., A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients, Br. J. Dermatol., 2010, 163, 78-82 10.1111/j.1365-2133.2010.09744.xSearch in Google Scholar PubMed

[8] Kalghatgi S., Friedman G., Fridman A., Clyne A. M., Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release, Ann. Biomed. Eng., 2010, 38, 748-57 10.1007/s10439-009-9868-xSearch in Google Scholar PubMed

[9] Barton A., Wende K., Bundscherer L., Hasse S., Schmidt A., Bekeschus S., et al., Non-thermal plasma increases expression of wound healing related genes in a keratinocyte cell line, Plasma Med., 2013, 3, 125-136 10.1615/PlasmaMed.2014008540Search in Google Scholar

[10] Greaves N. S., Ashcroft K. J., Baguneid M., Bayat A., Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing, J. Dermatol. Sci., 2013, 72, 206-217 10.1016/j.jdermsci.2013.07.008Search in Google Scholar PubMed

[11] Park J. E., Barbul A., Understanding the role of immune regulation in wound healing, Am. J. Surg., 2004, 187, 11S-16S 10.1016/S0002-9610(03)00296-4Search in Google Scholar

[12] Mahdavian Delavary B., van der Veer W. M., van Egmond M., Niessen F. B., Beelen R. H., Macrophages in skin injury and repair, Immunobiology, 2011, 216, 753-62 10.1016/j.imbio.2011.01.001Search in Google Scholar

[13] Reinke J. M., Sorg H., Wound repair and regeneration, Eur. Surg. Res., 2012, 49, 35-43 10.1159/000339613Search in Google Scholar

[14] Enoch S., Leaper D. J., Basic science of wound healing, Surgery (Oxford), 2005, 23, 37-42. 10.1383/surg.23.2.37.60352Search in Google Scholar

[15] Wang X., Studzinski G. P., Activation of extracellular signal-regulated kinases (ERKs) defines the first phase of 1,25-dihydroxyvitamin D3-induced differentiation of HL60 cells, J. Cell Biochem., 2001, 80, 471-82 10.1002/1097-4644(20010315)80:4<471::AID-JCB1001>3.0.CO;2-JSearch in Google Scholar

[15] Himes S. R., Sester D. P., Ravasi T., Cronau S. L., Sasmono T., Hume D. A., The JNK are important for development and survival of macrophages, J. Immunol., 2006, 176, 2219-28 10.4049/jimmunol.176.4.2219Search in Google Scholar

[16] Wang Y., Zeigler M. M., Lam G. K., Hunter M. G., Eubank T. D., Khramtsov V. V., et al., The role of the NADPH oxidase complex, p38 MAPK, and Akt in regulating human monocyte/macrophage survival, Am. J. Respir. Cell Mol. Biol., 2007, 36, 68-77 10.1165/rcmb.2006-0165OCSearch in Google Scholar

[17] Geest C. R., Coffer P. J., MAPK signaling pathways in the regulation of hematopoiesis, J. Leukoc. Biol., 2009, 86, 237-50 10.1189/jlb.0209097Search in Google Scholar

[18] Schaeffer H. J., Weber M. J., Mitogen-activated protein kinases: Specific messages from ubiquitous messengers, Mol. Cell Biol., 1999, 19, 2435-44 10.1128/MCB.19.4.2435Search in Google Scholar

[19] Avisetti D. R., Babu K. S., Kalivendi S. V., Activation of p38/JNK pathway is responsible for embelin induced apoptosis in lung cancer cells: transitional role of reactive oxygen species, PLoS ONE, 2014, 9, e87050 10.1371/journal.pone.0087050Search in Google Scholar

[20] Metelmann H.-R., Vu T. T., Do H. T., Le T. N. B., Hoang T. H. A., Phi T. T. T., et al., Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation, Clin. Plasma Med., 2013, 1, 30-35 10.1016/j.cpme.2012.12.001Search in Google Scholar

[21] Kramer A., Lademann J., Bender C., Sckell A., Hartmann B., Münch S., et al., Suitability of tissue tolerable plasmas (TTP) for the management of chronic wounds, Clin. Plasma Med., 2013, 1, 11-18 10.1016/j.cpme.2013.03.002Search in Google Scholar

[22] Bundscherer L., Wende K., Ottmüller K., Barton A., Schmidt A., Bekeschus S., et al., Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines, Immunobiology, 2013, 218, 1248– 1255 10.1016/j.imbio.2013.04.015Search in Google Scholar PubMed

[23] Weltmann K. D., Kindel E., Brandenburg R., Meyer C., Bussiahn R., Wilke C., et al., Atmospheric pressure plasma jet for medical therapy: Plasma parameters and risk estimation, Contrib. Plasma Phys., 2009, 49, 631-640 10.1002/ctpp.200910067Search in Google Scholar

[24] Winter J., Wende K., Masur K., Iseni S., Dünnbier M., Hammer M. U., et al., Feed gas humidity: A hidden parameter affects cold atmospheric pressure plasma jet and plasma-treated human skin cells, J. Phys. D.: Appl. Phys. , 2013, 46, 1-11 Search in Google Scholar

[25] Xu K., Yu F. S., Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats, Invest. Ophthalmol. Vis. Sci., 2011, 52, 3301-8 10.1167/iovs.10-5670Search in Google Scholar PubMed PubMed Central

[26] Liu M. K., Herrera-Velit P., Brownsey R. W., Reiner N. E., CD14- dependent activation of protein kinase C and mitogen-activated protein kinases (p42 and p44) in human monocytes treated with bacterial lipopolysaccharide, J. Immunol., 1994, 153, 2642-52 10.4049/jimmunol.153.6.2642Search in Google Scholar

[27] Bhatt N. Y., Kelley T. W., Khramtsov V. V., Wang Y., Lam G. K., Clanton T. L., et al., Macrophage-colony-stimulating factorinduced activation of extracellular-regulated kinase involves phosphatidylinositol 3-kinase and reactive oxygen species in human monocytes, J. Immunol., 2002, 169, 6427-34 10.4049/jimmunol.169.11.6427Search in Google Scholar PubMed

[28] Reuter S., Tresp H., Wende K., Hammer M. U., Winter J., Masur K., et al., From RONS to ROS: Tailoring plasma jet treatment of skin cells, IEEE Transact. Plasma Sci., 2012, 40, 2986–2993 10.1109/TPS.2012.2207130Search in Google Scholar

[29] Torres M., Forman H. J., Redox signaling and the MAP kinase pathways, Biofactors, 2003, 17, 287-96 10.1002/biof.5520170128Search in Google Scholar PubMed

[30] Ma R. N., Feng H. Q., Liang Y. D., Zhang Q., Tian Y., Su B., et al., An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium, J. Phys. D.: Appl. Phys., 2013, 46, 10.1088/0022-3727/46/28/285401Search in Google Scholar

[32] Heidenreich S., Schmidt M., August C., ullen P., Rademaekers A., Pauels H. G., Regulation of human monocyte apoptosis by the CD14 molecule, J. Immunol., 1997, 159, 3178-88 10.4049/jimmunol.159.7.3178Search in Google Scholar

[31] Cerella C., Coppola S., Maresca V., De Nicola M., Radogna F., Ghibelli L., Multiple mechanisms for hydrogen peroxide-induced apoptosis, Ann. N. Y. Acad. Sci., 2009, 1171, 559-63 10.1111/j.1749-6632.2009.04901.xSearch in Google Scholar PubMed

[32] Matsukawa J., Matsuzawa A., Takeda K., Ichijo H., The ASK1-MAP kinase cascades in mammalian stress response, J. Biochem., 2004, 136, 261-5. 10.1093/jb/mvh134Search in Google Scholar PubMed

[33] Bundscherer L., Bekeschus S., Tresp H., Hasse S., Reuter S., Weltmann K. D., et al., Viability of human blood leucocytes compared with their respective cell lines after plasma treatment, Plasma Med., 2013, 3, 71-80 10.1615/PlasmaMed.2013008538Search in Google Scholar

[34] Parihar A., Eubank T. D., Doseff A. I., Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death, J. Innate Immun., 2010, 2, 204-15 10.1159/000296507Search in Google Scholar PubMed PubMed Central

[35] Barton A., Wende K., Bundscherer L., Weltmann K. D., Lindequist U., Masur K., Non-Thermal Atmospheric Pressure Plasma Treatment of Human Cells: The Effect of Ambient Conditions, Proceedings of 21st International Symposium on Plasma Chemistry (4-9 August 2013, Cairns, Australia), 2013 Search in Google Scholar

[36] Tanigawa T., Kanazawa S., Ichibori R., Fujiwara T., Magome T., Shingaki K., et al., (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis, BMC Complement. Altern. Med., 2014, 14, 133 10.1186/1472-6882-14-133Search in Google Scholar PubMed PubMed Central

[37] Tresp H., Hammer M. U., Winter J., Weltmann K. D., Reuter S., Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy, J. Phys. D.: Appl. Phys. , 2013, 46, 435401 10.1088/0022-3727/46/43/435401Search in Google Scholar

[38] Tresp H., Hammer M. U., Weltmann K. D., Reuter S., Plasma generated reactive species in biologically relevant solutions, Plasma Med., 2013, 3, 45-55 10.1615/PlasmaMed.2014009711Search in Google Scholar

Received: 2014-1-7
Accepted: 2014-6-24
Published Online: 2014-12-30

© 2015 Lena Bundscherer et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0071/html
Scroll to top button