Skip to main content
Log in

Allelopathy: An overview from micro- to macroscopic organisms, from cells to environments, and the perspectives in a climate-changing world

  • Review
  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Allelopathy is an important ecological phenomenon influencing ecosystem dynamics. Currently, it has gained attention due to the potential applications of allelochemicals in agriculture. Allelopathic interactions have been reported in ecological relationships between plants and microorganisms, and between species of each group. These studies have been relatively descriptive, however, without interconnected views of how these molecules can affect cell biology and how they are integrated into environmental interactions. The present review provides an overview of the history, physiology, and ecological effects of allelopathy, with special focus on its occurrence between macro- and microorganisms and its ecological roles in terrestrial and aquatic environments. We have attempted to examine the interconnections between terrestrial and aquatic systems in relation to the production, dynamics, and ecological effects of allelochemicals and to discuss the possible effects of climate changes on allelopathic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abenavoli M.R., Sorgonà A., Sidari M., Badiani M. & Fuggi A. 2003. Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture. J. Plant Physiol. 160: 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Abrahim D., Braguini W.L., Kelmer-Bracht A.M. & Ishii-Iwamoto E.L. 2000. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol. 26: 611–624.

    Article  CAS  Google Scholar 

  • Achatz M., Morris E.K., Müller F., Hilker M. & Rillig M.C. 2014. Soil hypha-mediated movement of allelochemicals: Arbuscular mycorrhizae extend the bioactive zone of juglone. Funct. Ecol. 28: 1020–1029.

    Article  Google Scholar 

  • Alfredo A.G. & Aquila M.E.A. 2000. Alellopathy: An emerging topic in Ecophysiology. Rev. Bras. Fisiol. Veg. 12: 175–204.

    Google Scholar 

  • Aliotta G., Cafiero G. & Otero A.M. 2006. Weed germination, seedling growth and their lesson for allelopathy in agriculture, pp. 285–297. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy: A Physiological Process with Ecological Implicans. Springer, Dordrecht.

    Chapter  Google Scholar 

  • Arzul G., Seguel M., Guzman L. & Denn E.E. 1999. Comparison of allelopathic properties in 3 toxic Alexandrium species. J. Exp. Bot. 232: 285–295.

    Google Scholar 

  • Bais H.P., Vepachedu R., Gilroy S., Callaway R.M. & Vivanco J.M. 2003. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301: 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  • Barazani O. & Friedman J. 1999. Allelopathic bacteria and their impact on higher plants. Crit. Rev. Microbiol. 27: 741–755.

    Google Scholar 

  • Barto E.K., Weidenhamer J.D., Cipollini D. & Rillig M.C. 2012. Fungal superhighways: do common mycorrhizal networks enhance below ground communication? Trends Plant Sci. 17: 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Batish D.R., Singh H.P., Setia N., Kaur S. & Kohli R.K. 2006. 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol. Biochem. 44: 819–827.

    Article  CAS  PubMed  Google Scholar 

  • Bentley R. 1999. Secondary metabolite biosynthesis: The first century. Crit. Rev. Biotechnol. 19: 1–40.

    Article  CAS  PubMed  Google Scholar 

  • Bertin C., Yang X. & Weston L. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256: 67–83.

    Article  CAS  Google Scholar 

  • Blair A., Weston L., Nissen S., Brunk G. & Hufbauer R., 2009. The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol. Invasions 11: 325–332.

    Article  Google Scholar 

  • Blair A.C., Nissen S.J., Brunk G.R. & Hufbauer R.A. 2006. A lack of evidence for an ecological role of the putative allelochemical (+/–)-catechin inspotted knapweed invasion success. J. Chem. Ecol. 32: 2327–2331.

    Article  CAS  PubMed  Google Scholar 

  • Blanco J.A. 2007. The representation of allelopathy in ecosystem level forest models. Ecol. Modell. 209: 65–77.

    Article  Google Scholar 

  • Blum U. 2003. Fate of phenolic allelochemicals in soils: The role of soil and rhizosphere microorganisms, pp. 55–72. In: Galindo J.C.G., Macias F.A., Molinillo J.M.G. & Cutler H. (eds), Allelopathy: Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca Raton.

    Google Scholar 

  • Bouhaouel I., Gfeller A., Fauconnier M.L., Rezgui S., Amara H.S. & Jardin P. 2014. Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. BioControl 60: 425–436.

    Article  CAS  Google Scholar 

  • Braz Filho R. 2010. Phytochemical contribution to development of a emergent country. Quim. Nova 33: 229–239.

    Article  CAS  Google Scholar 

  • Burgos N.R., Talbert R.E., Kim K.S. & Kuk Y.I. 2004. Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). J. Chem. Ecol. 30: 671–689.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell M.M., Ballaré C.L., Bornman J.F., Flint S.D., Bjorn L.O., Teramura A.H., Kulandaivelu G. & Tevini M. 2003. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci. 2: 252–266.

    Article  Google Scholar 

  • Carmichael W.W. 1994. The toxins of Cyanobacteria. Sci. Am. 270. 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Céspedes C.L., Avila J.G., Martínez A., Serrato B., Calderón-Mugica J.C. & Salgado-Garciglia R. 2006. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J. Agric. Food Chem. 54: 3521–3527.

    Article  PubMed  CAS  Google Scholar 

  • Chou C. 2006. Introduction to allelopathy, pp. 1–9. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy: A Physiological Process with Ecological Implications. Springer, Dordrecht.

    Google Scholar 

  • Chu C., Mortimer P.E., Wang H., Wang Y., Liu X. & Yu S. 2014. Allelopathic effects of Eucalyptus on native and introduced tree species. For. Ecol. Manage. 323: 79–84.

    Article  Google Scholar 

  • Cipollini D., Rigsby C.M. & Barto E.K. 2012. Microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol. 38: 714–727.

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Ortega R., Lara-Núñez A. & Anaya A.L. 2007. Allelochemical stress can trigger oxidative damage in receptor plants: mode of action of phytotoxicity. Plant Signal. Behav. 2: 269–270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayan F.E., Howell J.L. & Weidenhamer J.D. 2009. Dynamic root exudation of sorgoleone and its in planta mechanism of action. J. Exp. Bot. 60: 2107–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza Nascimento C.E., Tabarelli M., da Silva C.A.D., Leal I.R., de Souza Tavares W., Serrão J.E. & Zanuncio J.C. 2014. The introduced tree Prosopis juliflora is a serious threat to native species of the Brazilian Caatinga vegetation. Sci. Total Environ. 481: 108–113.

    Article  PubMed  CAS  Google Scholar 

  • Dewick P.M. 2009. Medicinal natural products: A biosynthetic approach, 3rd ed. John Wiley & Sons Ltd, West Sussex.

    Book  Google Scholar 

  • Djurdjevic L., Popovic Z., Mitrovic M., Pavlovic P., Jaric S., Oberan L. & Gajic G. 2008. Dynamics of bioavailable rhizosphere soil phenolics and photosynthesis of Arum maculatum L. in a lime-beech forest. Flora 203: 590–601.

    Article  Google Scholar 

  • Duke S.O. & Dayan F.E. 2006. Modes of action of phytotoxins from plants pp. 511–536. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy: A Physiological Process with Ecological Implications. Springer, Dordrecht.

    Google Scholar 

  • Falkowski P.G. & Raven J.A., 2013. Aquatic photosynthesis, Second ed. Princeton University Press.

    Book  Google Scholar 

  • Farhoudi R. & Lee D.J. 2013. Allelopathic effects of barley extract (Hordeum vulgare) on sucrose synthase activity, lipid peroxidation and antioxidant enzymatic activities of Hordeum spontoneum and Avena ludoviciana. Proc. Natl. Acad. Sci. India Sect. B–Biol. Sci. 83: 447–452.

    Article  Google Scholar 

  • Ferguson J.J. & Rathinasabapathi B. 2003. Allelopathy: how plants suppress other plants [WWW Document]. Flórida IFAS Ext. https://doi.org/www.aphis.usda.gov/foia/FOLDE_10/AR00036513 Ferguson and Rathinasbapathi.pdf (accessed 1.1.15).

    Google Scholar 

  • Figueredo C.C., Giani A. & Bird D.F. 2007. Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion. J. Phycol. 43: 256–265.

    Article  Google Scholar 

  • Finkel Z.V, Beardall J., Flynn K.J., Quigg A., Rees T.A. V & Raven J.A. 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32: 119–137.

    Article  CAS  Google Scholar 

  • Fistarol G.O., Legrand C. & Granéli E. 2003. Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar. Ecol. Prog. Ser. 255: 115–25.

    Article  Google Scholar 

  • Fitter A. 2003. Making Allelopathy Respectable. Science 301: 1337–1338.

    Article  CAS  PubMed  Google Scholar 

  • Flesch G. & Rohmer M. 1988. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur. J. Biochem. 175: 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Friebe A., Roth U., Kück P., Schnabl H. & Schulz M. 1997. Effects of 2,4-dihydroxy-1,4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytochemistry 44: 979–983.

    Article  CAS  Google Scholar 

  • Fuerst E.P. & Putnam A.R. 1983. Separating the competitive and allelopathic components of interference. J. Chem. Ecol. 9: 937–944.

    Article  CAS  PubMed  Google Scholar 

  • Gagliardo R.W. & Chilton W.S. 1992. Soil transformation of 2(3H)-Benzoxazolone of rye into phytotoxic 2-amino-3Hphenoxazin-3-one. J. Chem. Ecol. 18: 1683–1691.

    Article  CAS  PubMed  Google Scholar 

  • Gomes M.P., Le Manac’h S.G., Maccario S., Labrecque M., Lucotte M. & Juneau P. 2016. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants. Pestic. Biochem. Physiol. 130: 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Aparicio L. & Canham C.D. 2008. Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. J. Ecol. 96: 447–458.

    Article  Google Scholar 

  • Gómez-Aparicio L., Zamora R., Gómez J.M., Hódar J.A., Castro J. & Baraza E. 2004. Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol. Appl. 14: 1128–1138.

    Article  Google Scholar 

  • Granéli E., Weberg M. & Salomon P.S. 2008. Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8: 94–102.

    Article  CAS  Google Scholar 

  • Grisi P.U., Ranal M.A., Gualtieri S.C.J. & Santana D.G. 2012. Allelopathic potential of Sapindus saponaria L. leaves in the control of weeds. Acta Sci. Agron. 34: 1–9.

    Article  Google Scholar 

  • Gross E.M. 2003. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22: 313–339.

    Article  Google Scholar 

  • Harbone J.B. 1994. Introduction to Ecological Biochemistry, 4th ed. Academic Press.

    Google Scholar 

  • Haugland E. & Brandsaeter L. 1996. Experiments on bioassay sensitivity in the study of allelopathy. J. Chem. Ecol. 22: 1845–1859.

    Article  CAS  PubMed  Google Scholar 

  • Hejl A.M. & Koste K.L. 2004. Juglone disrupts root plasma membrane H-ATPase activity and impairs water pptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J. Chem. Ecol. 30: 453–471.

    Article  CAS  PubMed  Google Scholar 

  • Hong Y., Hu H.Y., Xie X., Sakoda A., Sagehashi M. & Li F.M. 2009. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat. Toxicol. 91: 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Hortal S., Bastida F., Moreno J.L., Armas C., García C. & Pugnaire F.I. 2015. Benefactor and allelopathic shrub species have different effects on the soil microbial community along an environmental severity gradient. Soil Biol. Biochem. 88: 48–57.

    Article  CAS  Google Scholar 

  • Houle G. & Filion L. 2003. The effects of lichens on white spruce seedling establishment and juvenile growth in a sprucelichen woodland of subarctic Québec. Écoscience 10: 80–84.

    Article  Google Scholar 

  • Hussain M.I. & Reigosa M.J. 2011a. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. Plant Physiol. Biochem. 49: 1290–1298.

    Article  CAS  PubMed  Google Scholar 

  • Hussain M.I. & Reigosa M.J. 2011b. Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, nonphotochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. J. Exp. Bot. 62: 4533–4545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inderjit & Callaway R.M. 2003. Experimental designs for the study of allelopathy. Plant Soil 256: 1–11.

    Article  CAS  Google Scholar 

  • Inderjit & del Moral R. 1997. Is separating resource competition from allelopathy realistic? Bot. Rev. 63: 221–230.

    Article  Google Scholar 

  • Inderjit & Duke S. 2003. Ecophysiological aspects of allelopathy. Planta 217: 529–539.

    Article  CAS  PubMed  Google Scholar 

  • International Allelopathy Societ 1996. Constitution. Drawn up during the First World Congress on Allelopathy: a Science for the Future. Cadiz, Spain, 1996. Available at: https://doi.org/www.ias.uca.es/bylaws.htm#CONSTI, n.d.

    Google Scholar 

  • Ishii-Iwamoto E.L., Abrahim D., Sert M.A., Bonato C.M., Kelmer-Bracht A.M. & Bracht A. 2006. Mitochondria as a site of allelochemical action, pp. 267–284. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy. Springer Netherlands.

    Google Scholar 

  • Johansson J.F., Paul L.R., Finlay & R.D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Lett. 48: 1–13.

    Article  CAS  Google Scholar 

  • Jones W.P. & Kinghorn A.D. 2008. Biologically active natural products of the genus Callicarpa. Curr. Bioact. Compd. 4: 5–32.

    Article  Google Scholar 

  • Jose S. 2002. Black walnut allelopathy: current state of the science. In: Mallik A. & Inderjit (eds), pp. 149–172. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems SE–10. Birkhäuser Basel.

    Chapter  Google Scholar 

  • Jose S. & Gillespie A.R. 1998. Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth and physiology. Plant Soil 203: 199–206.

    Article  CAS  Google Scholar 

  • Jose S., Williams R. & Zamora D. 2006. Belowground ecological interactions in mixed-species forest plantations. For. Ecol. Manage. 233: 231–239.

    Article  Google Scholar 

  • Jüttner E. 1999. Allelochemical control of natural photoautotrophic biofilms, pp. 43–50. In: Keevil C., Godfree A., Holt D. & Dow C. (eds), Biofilms in the Aquatic Environment. Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Kawano T. 2003. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 21: 829–37.

    CAS  PubMed  Google Scholar 

  • Kearns K.D. & Hunter M.D. 2001a. Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb. Ecol. 42: 80–86.

    CAS  PubMed  Google Scholar 

  • Keating K.I. 1977. Allelopathic in?uence on blue-green bloom sequence in a eutrophic lake. Science 196: 886–887.

    Article  Google Scholar 

  • Keating K.I. 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.

    Article  CAS  PubMed  Google Scholar 

  • Knaggs A.R. 2003. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 20: 119–136.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K. 2004. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manag. 4: 1–7.

    Article  CAS  Google Scholar 

  • Körner S. & Nicklisch A. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol. 38: 862–871.

    Article  Google Scholar 

  • Kulik M.M. 1995. The potential for using cyanobacteria (bluegreen algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur. J. Plant Pathol. 101: 585–599.

    Article  Google Scholar 

  • Lara-Nuñez A., Romero-Romero T., Ventura J.L., Blancas V., Anaya A.L. & Cruz-Ortega R. 2006. Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill. Plant Cell Environ. 29: 2009–2016.

    Article  PubMed  CAS  Google Scholar 

  • Le Pogam P., Herbette G. & Boustie J. 2014. Analysis of lichen metabolites, a variety of approaches, pp. 229–261. In: Upreti D.K., Divakar P.K., Shukla V. & Bajpai R. (eds), Recent Advances in Lichenology. Modern Methods and Approaches in Biomonitoring and Bioprospection.

    Google Scholar 

  • Legrand C., Rengefors K., Fistarol G.O. & Granéli E. 2003. Allelopathy in phytoplankton–biochemical, ecological and evolutionary aspects. Phycologia 42: 406–419.

    Article  Google Scholar 

  • Lehle F.R. & Putnam A.R. 1982. Quantification of allelopathic potential of sorghum residues by novel indexing of richards’ function fitted to cumulative cress seed germination curves. Plant Physiol. 69: 1212–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leu E., Krieger-Liszkay A., Goussias C. & Gross E.M. 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol. 130: 2011–2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levizou E.F.I., Karageorgou P., Psaras G.K. & Manetas Y. 2002. Inhibitory effects of water soluble leaf leachates from Dittrichia viscosa on lettuce root growth, statocyte development and graviperception. Flora–Morphol. Distrib. Funct. Ecol. Plants 197: 152–157.

    Article  Google Scholar 

  • Li F.M. & Hu H.Y. 2005. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl. Environ. Microbiol. 71: 6545–6553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X., Wang J., Huang D., Wang L. & Wang K. 2011. Allelopathic potential of Artemisia frigida and successional changes of plant communities in the northern China steppe. Plant Soil 341: 383–398.

    Article  CAS  Google Scholar 

  • Li Z.-H., Wang Q., Ruan X., Pan C.-D. & Jiang D.-A., 2010. Phenolics and Plant Allelopathy. Molecules 15: 8933–8952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B.Y., Jiang P., Zhou A.E., Tian J.R. & Jiang S.Y. 2007. Effect of pyrogallol on the growth and pigment content of cyanobacteria-blooming toxic and nontoxic Microcystis aeruginosa. Bull. Environ. Contam. Toxicol. 78: 499–502.

    Article  CAS  PubMed  Google Scholar 

  • Lokajová V., Bačkorová M. & Bačkor M. 2014. Allelopathic effects of lichen secondary metabolites and their naturally occurring mixtures on cultures of aposymbiotically grown lichen photobiont Trebouxia erici (Chlorophyta). South African J. Bot. 93: 86–91.

    Article  CAS  Google Scholar 

  • Lotina-Hennsen B., King-Diaz B., Aguilar M.I. & Terrones M.H. 2006. Plant secondary metabolites. Targets and mechanisms of allelopathy, pp. 229–265. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy. Springer Netherlands.

    Chapter  Google Scholar 

  • Loydi A., Donath T.W., Eckstein R.L. & Otte A. 2015. Nonnative species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol. Invasions 17: 581–595.

    Article  Google Scholar 

  • Macías F., Oliveros-Bastidas A., Marín D., Carrera C., Chinchilla N. & Molinillo J.G. 2008. Plant biocommunicators: their phytotoxicity, degradation studies and potential use as herbicide models. Phytochem. Rev. 7: 179–194.

    Article  CAS  Google Scholar 

  • Macias F.A., Marin D., Oliveros-Bastidas A., Varela R.M., Simonet A.M., Carrera C. & Molinillo J.M. 2003. Allelopathy as a new strategy for sustainable ecosystems development. Biol. Sci. Space. 17: 18–23.

    Article  PubMed  Google Scholar 

  • Macías F.A., Molinillo J.M.G., Galindo J.C.G., Varela R.M., Simonet A.M. & Castellano D. 2001. The use of allelopathic studies in the search for natural herbicides. J. Crop Prod. 4: 237–255.

    Article  Google Scholar 

  • Macias F.A., Molinillo J.M.G., Varela R.M. & Galindo C.G. 2007. Allelopathy–a natural alternative for weed control. Pest Manag. Sci. 63: 327–34.

    Article  CAS  PubMed  Google Scholar 

  • Maraschin-Silva F. & Aquila M.E.A. 2005. Potencial alelopático de Dodonaea viscosa (L.) Jacq. Iheringia 60: 91–98.

    Google Scholar 

  • Maraschin-Silva F. & Aqüila M.E.A. 2006. Contribuição ao estudo do potencial alelopático de espécies nativas. Rev. Árvore 30: 547–555.

    Article  Google Scholar 

  • Meeks J.C., Elhai J., Thiel T., Potts M., Larimer F., Lamerdin J., Predki P. & Atlas R. 2001. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth. Res. 70: 85–106.

    Article  CAS  PubMed  Google Scholar 

  • Meier C. & Bowman W. 2008. Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia 158: 95–107.

    Article  PubMed  Google Scholar 

  • Mishra N.P., Mishra R.K. & Singhal G.S. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol. 102: 903–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár K. & Farkas E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforsch. C 65: 157–173.

    Article  Google Scholar 

  • Mulderij G., Mooij W.M., Smolders A.J.P. & Van Donk E. 2005. Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquat. Bot. 82: 284–296.

    Article  Google Scholar 

  • Nakai S., Yutaka I. & Hosomi M. 2000. Myriophyllum spicatum released allelopathic polyphenols inhibiting growth of blue–green algae Microcystis aeruginosa. Water Res. 34: 3026–3032.

    Article  CAS  Google Scholar 

  • Ni G.-Y., Schaffner U., Peng S.-L. & Callaway R. 2010. Acroptilon repens, an Asian invader, has stronger competitive effects on species from America than species from its native range. Biol. Invasions 12: 3653–3663.

    Article  Google Scholar 

  • Nilsson M.-C. 1994. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98: 1–7.

    Article  PubMed  Google Scholar 

  • Oliva A., Moraes R.M., Watson S.B., Duke S.O. & Dayan F.E. 2002. Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pestic. Biochem. Physiol. 72: 45–54.

    Article  CAS  Google Scholar 

  • Orr G. & Jones G.J. 1998. Relashionship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43: 1604–1614.

    Article  CAS  Google Scholar 

  • Padisák J. 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of ecology. Arch. Für Hydrobiol. 107: 563–593.

    Google Scholar 

  • Pratt R. 1940. Studies on Chlorella vulgaris. V. Some properties of the growth inhibitor formed by Chlorella cells. Am. J. Bot. 29: 142–148.

    Article  Google Scholar 

  • Pratt R. 1944. Studies on Chlorella vulgaris. IX. Influence on growth of Chlorella of continous removal of chlorellin from the culture solution. Am. J. Bot. 31: 418–421.

    Article  CAS  Google Scholar 

  • Pratt R., Daniels T.C., Eiler J.J., Gunnison J.B., Kumler W.D., Oneto J.F., Spoehp H.A., Hardin G.J., Milner H.W., Smith J.H.C. & Strain H.H. 1944. Chlorellin, an antibacterial substance from Chlorella. Science 99: 351–352.

    Article  CAS  PubMed  Google Scholar 

  • Pratt R. & Fong J. 1940. Studies on Chlorella vulgaris. II Further evidence that Chlorella cells form a growth-inhibiting substance. Am. J. Bot. 27: 431–436.

    Article  CAS  Google Scholar 

  • Rengefors K. & Legrand C. 2001. Toxicity in Peridinium aciculiferum–an adaptive strategy to outcompete other winter phytoplankton? Limnol. Oceanogr. 46: 1990–1997.

    Article  CAS  Google Scholar 

  • Rice E.L. 1984. Allelopathy, 2nd ed. Academic Press, New York, NY.

    Google Scholar 

  • Rohmer M. 1999. The discovery of the mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565–574.

    Article  CAS  PubMed  Google Scholar 

  • Romagni J.G., Allen S.N. & Dayan F.E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26: 303–313.

    Article  CAS  Google Scholar 

  • Sánchez-Moreiras A.M., de la Peña T.C. & Reigosa M.J. 2008. The natural compound benzoxazolin-2 (3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 69: 2172–2179.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Moreiras A.M., Martinez-Peñalver A. & Reigosa M.J. 2011. Early senescence induced by 2–3 H-benzoxazolinone (BOA) inArabidopsis thaliana. J. Plant Physiol. 168: 863–870.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel I., Doan N.T., Chazal N. & Smith G.D. 1999. Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J. Appl. Phycol. 10: 471–479.

    Article  Google Scholar 

  • Schmidt S.K. & Ley R.E. 1999. Microbial competition and soil structure limit the expression of allelochemicals in nature, pp. 339–351. In: Inderjit, Dakshini K. & Foy C. (eds), Principles and Practices in Plant Ecology. CRC Press, Boca Raton.

    Google Scholar 

  • Schrader K.K., Nanayakkara N.P.D., Tucker C.S., Rimando A.M., Ganzera M. & Schaneberg B.T. 2003. Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Appl. Environ. Microbiol. 69: 5319–5327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scognamiglio M., D’Abrosca B., Esposito A., Pacifico S., Monaco P. & Fiorentino A. 2013. Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochem. Rev. 12: 803–830.

    Article  CAS  Google Scholar 

  • Sedia E.G. & Ehrenfeld J.G. 2003. Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100: 447–458.

    Article  Google Scholar 

  • Sene M., Dore T. & Pellissier F. 2000. Effect of phenolic acids in soil under and between rows of a prior sorghum (Sorghum bicolor) crop on germination, emergence and seedling growth of peanut (Arachis hypogea). J. Chem. Ecol. 26: 625–637.

    Article  CAS  Google Scholar 

  • Shannon-Firestone S. & Firestone J. 2015. Allelopathic potential of invasive species is determined by plant and soil community context. Plant Ecol. 216: 491–502.

    Article  Google Scholar 

  • Stark S., Kytöviita M.-M. & Neumann A.B. 2007. The phenolic compounds in Cladonia lichens are not antimicrobial in soils. Oecologia 152: 299–306.

    Article  PubMed  Google Scholar 

  • Stolte W., Karlsson C., Carlsson P. & Granéli E. 2002. Modeling the increase of nodularin content in Baltic sea Nodularia spumigena during stationary phase in phosphorus limited batch cultures. FEMS Microbiol. Ecol. 41: 211–220.

    Article  CAS  PubMed  Google Scholar 

  • Suikkanen S., Fistarol G.O. & Granéli E. 2005. Effects of cyanobacterial allelochemicals on a natural plankton community. Mar. Ecol. Prog. Ser. 287: 1–9.

    Article  Google Scholar 

  • Takahashi S. & Murata N. 2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 13: 178–82.

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D. 2013. Allelopathic effects of Lantana camara L. on Lathyrus sativus L.: Oxidative imbalance and cytogenetic consequences. Allelopath. J. 31: 71–90.

    Google Scholar 

  • Teerarak M., Laosinwattana C. & Charoenying P. 2010. Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresour. Technol. 101: 5677–5684.

    Article  CAS  PubMed  Google Scholar 

  • Thorpe A.S., Thelen G.C., Diaconu A. & Callaway R.M. 2009. Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J. Ecol. 97: 641–645.

    Article  Google Scholar 

  • Tilman D. 1988. Plant strategies and the structure and dynamics of plant communities. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tilman D. 1994. Competition and Biodiversity in Spatially Structured Habitats. Ecology 75: 2–16.

    Article  Google Scholar 

  • Tongma S., Kobayashi K. & Usui K. 1998. Allelopathic activity of Mexican sun?ower (Tithonia diversifolia) in soil. Weed Sci. 46: 432–437.

    Article  CAS  Google Scholar 

  • von Elert E. & Jüttner F. 1997. Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum (Cyanobacteria). Limnol. Oceanogr. 42: 1796–1802.

    Article  Google Scholar 

  • Waller G.R., Jurzysta M. & Thorne R.L.A. 1993. Allelopathic activity of root saponins from alfalfa (Medicago sativa L.) on weeds and wheat. Bot. Bull. Acad. Sin. 34: 1–11.

    CAS  Google Scholar 

  • Weidenhamer J.D. 1996. Distinguishing resource competition and chemical interference: Overcoming the methodological impasse. Agron. J. 88: 866–875.

    Article  Google Scholar 

  • Willis R.J. 2007. The history of allelopathy. Springer Science & Business Media.

    Google Scholar 

  • Windust A.J., Quilliam M.A., Wright J.C. & McLachlan J. 1997. Comparative toxicity of the diarrheic shellfish poisons, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35: 1591–1603.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe J.M. & Rice E.L., 1979. Allelopathic interactions among algae. J. Chem. Ecol. 5: 533–542.

    Article  Google Scholar 

  • Wu H., Pratley J., Lemerle D. & Haig T. 1999. Crop cultivars with allelopathic capability. Weed Res. 39: 171–180.

    Article  Google Scholar 

  • Wurst S., Vender V. & Rillig M. 2010. Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses? Plant Ecol. 211: 19–26.

    Article  Google Scholar 

  • Yu J.Q., Ye S.F., Zhang M.F. & Hu W.H. 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31: 129–139.

    Article  CAS  Google Scholar 

  • Yu Z.W., Sun W.H. & Guo K.Q. 1992. Allelopathic effects of several aquatic plants on algae. Acta Hydrobiol. Sin. 16: 1–7.

    Google Scholar 

  • Zeng R.S. 2014. Allelopathy–The solution is indirect. J. Chem. Ecol. 40: 515–516.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C., Ling F., Yi Y.L., Zhang H.Y. & Wang G.X. 2014. Algicidal activity and potential mechanisms of ginkgolic acids isolated from Ginkgo biloba exocarp on Microcystis aeruginosa. J. Appl. Phycol. 26: 323–332.

    Article  CAS  Google Scholar 

  • Zhang D.J., Zhang J., Yang W.Q. & Wu F.Z. 2010. Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages. Ecol. Res. 25: 13–23.

    Article  Google Scholar 

  • Zhou Y.H. & Yu J.Q. 2006. Allelochemicals and photosynthesis, pp. 127–139. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy. Springer Netherlands.

    Chapter  Google Scholar 

  • Zhu M., Ma C., Wang Y., Zhang L., Wang H., Yuan Y. & Du K. 2009. Effect of extracts of Chinese pine on its own seed germination and seedling growth. Front. Agric. China 3: 353–358.

    Article  Google Scholar 

  • Zhu X., Zhang J. & Ma K. 2011. Soil biota reduce allelopathic effects of the invasive Eupatorium adenophorum. PLoS One 6: e25393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleber Cunha Figueredo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, M.P., Garcia, Q.S., Barreto, L.C. et al. Allelopathy: An overview from micro- to macroscopic organisms, from cells to environments, and the perspectives in a climate-changing world. Biologia 72, 113–129 (2017). https://doi.org/10.1515/biolog-2017-0019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0019

Key words

Navigation