Skip to main content
Log in

Glycinebetaine priming improves salt tolerance of wheat

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Salinity stress is one of the most serious environmental factors limiting plant growth and productivity in large areas around the world. Priming approach was adopted to study the effect of glycinebetaine (GB) on enhancing salt tolerance of sensitive wheat cultivar (Gomeza 7). The caryopsis were primed in different concentrations of GB (25, 50, 100 mM) for 24 h, and then treated with or without 150 mM NaCl added to 1/4-modified Hoagland solution (MHS). The NaCl treatment lasted 38 d under natural environmental conditions. Salt stress reduced all growth parameters measured: fresh mass, dry mass, relative growth rate, for the shoots and roots, and relative water content (RWC). Salt imposition increased the level of Na+ and Cl, and reduced Ca+2 and K+ levels in both shoots and roots. Exogenous application of GB alleviated the deleterious effects of salinity on growth and mineral contents, the effect was more pronounced with 25 mM GB. Priming of caryopsis in GB counteracted the increase in the plasma membrane (PM) permeability and increased the cell solute potential, which was decreased by salinity. GB priming also increased the GB and glutathione concentrations, and reduced proline (Pro) as well as lipid peroxidation. Salt tolerance enhancement by GB priming might be occurred through reduced lipid peroxidation, increased GB and glutathione resulting in PM protection, and eventually ion homeostasis. The study is a valuable confirmation for enhancing salt adaptation via GB priming, which is of general interest for agriculture practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ψs:

cell solute potential

GB:

glycinebetaine

MDA:

malondialdehyde

MHS:

modified Hoagland solution

Ks:

permeability coefficient

Pro:

proline

References

  • Anjum N.A., Aref I.M., Durate A.C., Pereira E., Ahmad I. & Iqbal M. 2014. Glutathione and proline co-ordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Front. Plant Sci. 5: doi: 10.3389/fpls.2014.00662.

  • Arafa A.A., Khafagy M.A. & El-Banna M.F. 2009. The effect of glycinebetaine or ascorbic acid on grain germination and leaf structure of sorghum plants grown under salinity stress. Plant Nutr. 5: 294–304.

    Google Scholar 

  • Ashraf M. & Foolad M.R. 2007. Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59: 206–216.

    Article  CAS  Google Scholar 

  • Barrett-Lennard E. & Setter E. 2010. Developing saline agriculture moving from traits and genes to systems. Funct. Plant Biol. 37: 3–5.

    Article  Google Scholar 

  • Bates L.S., Waldren I.D. & Tare I. 1973. Rapid determination of free proline for water stress studies. Plant Soil 13: 875–883.

    Google Scholar 

  • Beutler E., Durgun O. & Kelly B.M. 1963. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 51: 882–888.

    Google Scholar 

  • Bohnert H.J., Nelson D.E. & Jensen G.R. 1995. Adaptation to environmental stresses. Plant Cell 7: 1099–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bor M., Ozdemir F. & Turkan I. 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci. 164: 77–84.

    Article  CAS  Google Scholar 

  • Cha-um S., Supaibulwatana K. & Kirdmanee C. 2006. Water relations, photosynthetic ability and growth of Thai rice (Oryza sativa L. ssp. Indica cv. KDML 105) to salt stress by application of exogenous glycinebetaine and choline. J. Agron. Crop Sci. 192: 25–36.

    Article  CAS  Google Scholar 

  • Chen T.H.H. & Murata N. 2008. Glycinebetaine: an effective pro-tectant against abiotic stress in plants. Trends Plant Sci. 13: 499–505.

    Article  CAS  PubMed  Google Scholar 

  • Colmer T.D., Munns R. & Flowers T.J. 2006. Improving salt tolerance of wheat and barley: Future prospects. Animal Prod. Sci. 45: 1437–1447.

    Google Scholar 

  • Demiral T. & Turkan I. 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 161: 1089–1100.

    Article  CAS  PubMed  Google Scholar 

  • Demiral T. & Turkan I. 2006. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53: 247–257.

    Article  CAS  Google Scholar 

  • Epstein E. 1972. Mineral Nutrition of Plants. Principles and Perspectives. Wiley, New York.

    Google Scholar 

  • FAO 2004. The state of food insecurity in the world. https://doi.org/www.fao.Org/3/a-y650e3/a-y650e.

    Google Scholar 

  • FAO 2008. Land and plant nutrition management service. https://doi.org/www.fao.Org/ag/agl/spushag/agl/spush.

    Google Scholar 

  • Farooq S. & Azam F. 2006. The use of cell membrane stability technique to screen for salt tolerant wheat varieties. J. Plant Physiol. 163: 629–637.

    Article  CAS  PubMed  Google Scholar 

  • Flowers T.J., Galal H.K. & Bromhamt N. 2010. Evaluation of halophytes origins of salt tolerance in Land plants. Funct. Plant Biol. 37: 604–612.

    Article  Google Scholar 

  • Foyer C.H. & Noctor G. 2005. Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in physiological context. Plant Cell Environ. 28: 1056–1071.

    Article  CAS  Google Scholar 

  • Grieve C. & Maas E.V. 1984. Betaine accumulation in salt stressed Sorghum. Physiol. Plant. 61: 167–171.

    Article  CAS  Google Scholar 

  • Hunt R. 1981. Plant growth analysis. In: Studies in biology. Eduard Arnold, London.

    Google Scholar 

  • Hussain M., Malik M.A., Farooq M., Khan M.B., Akram M. & Saleem M.F. 2009. Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. J. Agron. Crop Sci. 195: 98–109.

    Article  CAS  Google Scholar 

  • Jisha K.C., Vijayakumari K. & Puthur J.T. 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35: 1381–1396.

    Article  Google Scholar 

  • Kaya C., Sonmez O., Aydemir S. & Dikilitas M. 2013. Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turk J. Agric. Forest. 37: 188–194.

    CAS  Google Scholar 

  • Khafagy M. A., Arafa A.A. & El-Banna M.F. 2009. Glycinbetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. Plant Nutr. 5: 257–267.

    Google Scholar 

  • Longxing H., Tao H., Zhang X., Pang H. & Jinmin F. 2012. Exogenous glycinbetaine ameliorate the adverse effect of salt stress on perennial Rayegrass. J. Amer. Soc. Hort. Sci. 137: 38–46.

    Article  Google Scholar 

  • Mansour M.M.F., Lee-Stadelmann O.Y. & Stadelmann E.J. 1993. Salinity stress and cytoplasmic factors. A comparison of cell permeability and lipid partiality in salt sensitive and salt resistant cultivars and lines of Triticum aestivum and Hordium vulgare. Physiol. Plant. 88: 141–148.

    Article  CAS  Google Scholar 

  • Mansour M.M.F. 1995. Changes in cell membrane permeability and lipid content of wheat root cortex cells induced by NaCl. Biol. Plant. 37: 143–145.

    Article  CAS  Google Scholar 

  • Mansour M.M.F. 1998. Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiol. Biochem. 36: 767–772.

    Article  CAS  Google Scholar 

  • Mansour M.M.F. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43: 491–500.

    Article  CAS  Google Scholar 

  • Mansour M.M.F., Salama K.H.A., Al-Mutawa M.M. & Abou Hadid A.F. 2002. Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biol. Plant. 45: 235–239.

    Article  CAS  Google Scholar 

  • Mansour M.M.F., & Salama K.H.A. 2004. Cellular basis of salinity tolerance in plant. Environ. Exp. Bot. 52: 113–122.

    Article  CAS  Google Scholar 

  • Mansour M.M.F., Salama K.H.A., Ali F.Z.M. & Abou Hadid A.F. 2005. Cell and plant responses to NaCl in (Zea mays L.) cultivars differing in salt tolerance. Gen. Appl. Plant Physiol. 31: 29–41.

    CAS  Google Scholar 

  • Mansour M.M.F. 2013. Plasma membrane permeability as an indicator of salt tolerance in plants. Biol. Plant. 57: 1–10.

    Article  CAS  Google Scholar 

  • Mansour M.M.F. 2014. The plasma membrane transport systems and adaptation to salinity. J. Plant Physiol. 171: 1787–1800.

    Article  CAS  PubMed  Google Scholar 

  • Mansour M.M.F., Salama K.H.A. & Allam H.Y.H., 2015. Role of the plasma membrane in saline conditions: lipids and proteins. Bot. Rev., DOI: https://doi.org/10.1007/s12229-015-9156-4.

    Google Scholar 

  • Meloni D.A. & Martinez C.A. 2009. Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings. Braz. J. Plant Physiol. 21: 233–241.

    Article  Google Scholar 

  • Munns R. 1985. Na+, K+, Cl in xylem sap flowing to shoots of NaCl treated barley. J. Exp. Bot. 36: 1032–1042.

    Article  CAS  Google Scholar 

  • Munns R. & Tester M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Naqvi S.S., Mumtaz S., Ali S.A., Khan A.H., Ashraf M.Y. & Khan M.A. 1994. Proline accumulation under salinity. Is abscisic acid involved? Acta Physiol. Plant. 16: 117–22.

    CAS  Google Scholar 

  • Nawaz K. & Ashraf M. 2007. Improvement in salt tolerance of maize by exogenous application of glycinebetaine: growth and water relations. Pak. J. Bot. 39: 1647–1653.

    Google Scholar 

  • Nawaz K. & Ashraf M. 2010. Exogenous application of glycinebetaine modulate activities of antioxidants in maize plants subjected to salt stress. J. Agron. Crop Sci. 196: 28–37.

    Article  CAS  Google Scholar 

  • Ohkawa H., Ohishi N. & Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Qadir M., Tubeilch A., Akktan J., Larbi A., Minbas P. & Khan M. 2008. Productivity enhancement of salt-affected environments through crop diversification, pp. 22–39. In: Staples R.C. & Toenniessen G.H. (eds), Salinity Tolerance in Plants, Strategies for Crop Improvement, Wiley, New York.

    Google Scholar 

  • Ranganna S. 1977. Manual of analysis of fruit and vegetable product, (2nd edition), McGraw-Hill, New Delhi.

    Google Scholar 

  • Raza S.H., Athar H.R., Ashraf M. & Hameed A. 2007. Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ. Exp. Bot. 60: 368–376.

    Article  CAS  Google Scholar 

  • Salama K.H.A. 2009. Amelioration of NaCl-induced alterations on the plasma membrane of Allium cepa L. by ascorbic acid. Aust. J. Basic Appl. Sci. 3: 990–994.

    CAS  Google Scholar 

  • Salama K.H.A & Mansour M.M.F. 2015. Choline priming-induced plasma membrane lipid alterations contributed to improved wheat salt tolerance. Acta Physiol. Plant. 37: 170.

    Article  CAS  Google Scholar 

  • Shalhevet J. 1993. Plant under salt and water stress, pp. 178–190. In: Fowden L., Mansfield T. & Stoddart J. (eds), Plant Adaptation to Environmental Stress, Chapman and Hall, London.

    Google Scholar 

  • Srivastava A.K., Singh K., Ghosha A.K., Darash R., Rai R.K., Shunkla S.P. & Singh K. 1989. Uptake and partitioning of sodium and chloride ions in sugarcane. Sugarcane 4: 3–6.

    Google Scholar 

  • Stadelmann E.J. & Lee-Stadelmann O.Y. 1989. Passive permeability. Methods Enzymol. 174: 143–216.

    Google Scholar 

  • Steduto P., Katerji N., Puertos-Molina H., Mastrorilli M. & Rana G. 1997. Water-use efficiency of sweet sorghum under water stress conditions: Gas-exchange investigations at leaf and canopy scales. Field Crops Res. 54: 221–234.

    Article  Google Scholar 

  • Tao R. & Gao M. 2003. Technologies for improving tolerance to environmental stress: genetic engineering of salt stress tolerance in Japanese persimmon (Diospyros kaki) with the genes involved in biosynthesis of compatible solute. Acta Horti. 625: 307–320.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Magdy F. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, K.H.A., Mansour, M.M.F. & Al-Malawi, H.A. Glycinebetaine priming improves salt tolerance of wheat. Biologia 70, 1334–1339 (2015). https://doi.org/10.1515/biolog-2015-0150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0150

Key words

Navigation