Skip to main content
Log in

Purification and characterization of antifungal chitinase from Bacillus safensis MBCU6 and its application for production of chito-oligosaccharides

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The chitinase producing bacterial strain was isolated from the vermicompost amended site of Mehsana district of Gujarat, India, and identified as Bacillus safensis MBCU6 using 16S rDNA sequencing. The chitinase was purified by ammonium sulfate precipitation followed by diethylaminoethanol sepharose CL-6B column chromatography. The purified enzyme could be demonstrated as a single band on sodium dodecyl sulfate polyacryalamide gel electrophoresis analysis as well as clear zone on zymogram, with estimated molecular mass of 58 kDa. The optimum pH and temperature of chitinase were pH 7.0 and 60°C, respectively. The purified chitinase exhibited high degree of antifungal activity particularly against pathogenic Macrophomina phaseolina (60%) and Rhizoctonia solani (73%) by dissolving their cell wall components. The purified enzyme could hydrolyze colloidal chitin to its oligomers. It infers that the chitinase produced by Bacillus safensis may play a significant role in the activity as a biopesticide and bioactive material production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DEAE:

diethylaminoethanol

NAG:

N-aetylglucosamine

SDS-PAGE:

sodium dodecyl sulfate poly-acryalamide gel electrophoresis

TLC:

thin-layer chromatography

References

  • Ahmadian G., Degrassi G., Venturi V., Zeigler D.R., Soudi M. & Zanguinejad P. 2007. Bacillus pumilus SG2 isolated from saline conditions produces and secretes two chitinases. J. Appl. Microbiol. 103. 1081–1089.

    Article  CAS  Google Scholar 

  • Chang W.T., Chen M.L. & Wang S.L. 2010. An antifungal chiti-nase produced by B. subtilis using chitin waste as a carbon source. World J. Microbiol. Biotechnol. 26. 945–950.

    Article  CAS  Google Scholar 

  • Claus D. & Berkeley R.C.W. 1984. Genus Bacillus, pp. 1104–1139. In: Sneath P.H.A. (ed.), Bergey’s Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore.

    Google Scholar 

  • Chang W.T., Chen C. & Wang S.L. 2003. An antifungal chitinase produced by B. cereus using shrimp and crab shell powder as a carbon source. Curr. Microbiol. 47. 102–108.

    Article  CAS  Google Scholar 

  • Fravel D. 2005. Commercialization and implementation of bio-control. Annu. Rev. Phytopathol. 43. 337–359.

    Article  CAS  Google Scholar 

  • Ghasemi S., Ahmadian G., Jelodar N.B., Rahimian H., Ghandili S., Dehestani Ali. & Shariati P. 2010. Antifungal chitinases from B. pumilus SG2: preliminary report. World J. Microbiol. Biotechnol. 26. 1437–1443.

    Article  CAS  Google Scholar 

  • Gohel V., Singh A., Vimal M., Ashwini P. & Chhatpar H.S. 2006. Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr. J. Biotechnol. 5. 54–72.

    Google Scholar 

  • Halder S.K., Maity C., Jana A., Das A., Paul T., Mohapatra P.K.D., Pati B.R. & Mondal K.C. 2013. Proficient biodegra-dation of shrimp shell waste by Aeromonas hydrophila SBK1 for the concomitant production of antifungal chitinase and antioxidant chitosaccharides. Int. Biodeter. Biodegrad. 79

    Google Scholar 

  • Halder S.K., Maity C., Jana A., Pati B.R. & Mondal K.C. 2012. Chitinolytic enzymes from the newly isolated Aeromonas hy-drophila SBK1: study of the mosquitocidal activity. BioCon-trol 57: 441–449.

    Article  CAS  Google Scholar 

  • Hammani I., Siala R., Jridi M., Ktari N., Nasir M. & Triki M.A. 2013. Partial purification and characterization of chiIO8, a novel antifungal chitinase produced by Bacillus cereus IO8. J. Appl. Microbiol. 115. 358–366.

    Article  Google Scholar 

  • Heydari A. & Pessarakli M. 2010. A review on biological control of fungal plant pathogens using microbial antagonists. J. Biol. Sci. 10. 273–290.

    Article  Google Scholar 

  • Imoto T. & Yagishita K. 1971. A simple activity measurement by lysozyme. Agric. Biol. Chem. 35. 1154–1156.

    Article  CAS  Google Scholar 

  • Kandra P., Challa M.M. & Jyothi H.K. 2012. Efficient use of shrimp waste: present and future trends. Appl. Microbiol. Biotechnol. 93:17–29.

    Article  Google Scholar 

  • Kishore G.K., Pande S. & Podile A.R. 2005. Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95: 1157–1165.

    Article  CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  • Lee Y.S., Park I.H., Yoo J.S., Chung S.Y., Lee Y.C., Cho Y.S., Ahn S.C., Kim C.M. & Choi Y.L. 2007. Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101. Bioresour. Technol. 98. 2734–2741.

    Article  CAS  Google Scholar 

  • Lien T.S., Yu S.T., Wu S.T. & Too J.R. 2007. Induction and purification of a thermophilic chitinase produced by Aeromonas sp. DYU-Too7 using glucosamine. Biotechnol. Bioprocess Eng. 12. 610–617.

    Article  CAS  Google Scholar 

  • Meena S., Gothwal R.K., Saxena J., Mohan M.K. & Ghosh P. 2013. Chitinase production by a newly isolated thermotolerant Paenibacillus sp. BISR-047. Ann. Microbiol. 64. 787–797.

    Article  Google Scholar 

  • Nawani N.N., Kapadnis B.P., Das A.D., Rao A.S. & Mahajan S.K. 2002. Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2. J. Appl. Microbiol. 93. 965–975.

    Article  CAS  Google Scholar 

  • Pandya U., Sudhir A., Gohel H., Subramanian R.B. & Saraf M. 2014. Zymographic identification and biochemical characterization of chitinase against phytofungal pathogens. J. Micro-biol. Biotechnol. Food Sci. 4. 44–47.

    Google Scholar 

  • Pechsrichuang P., Yoohat K. & Yamabhai M. 2013. Production of recombinant B. subtilis chitosanase, suitable for biosynthesis of chitosan oligosachharides. Bioresour. Technol. 127. 407–414.

    Article  CAS  Google Scholar 

  • Perez-Garcia A., Romero D. & de Vicente A. 2011. Plant protection and growth stimulation by microorganisms: biotech-nological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22. 187–193.

    Article  CAS  Google Scholar 

  • Prasanna L., Eijsink V.G.H., Meadow R. & Gaseidnes S. 2013. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol poetential. Appl. Microbiol. Biotechnol. 97. 1601–1611.

    Article  CAS  Google Scholar 

  • Sampson M.N. & Gooday G.W. 1998. Involvement of chitinases of B. thuringiensis in insects. Microbiology 144: 2189–2194.

    Article  CAS  Google Scholar 

  • Shali A., Ghasemi S., Ahmadian G., Ranjbar G., Dehestani Ali., Khalesi N., Mortallebi E. & Vahed M. 2010. B. pumilus SG2 chitinases induced and regulated by chitin, show inhibitory activity against F. graminearum and B.sorokiniana. Phytoparasitica 38: 141–147.

    Article  Google Scholar 

  • Shanmugam V., Thakur H. & Gupta S. 2013. Use of chitinolytic Bacillus atrophaeus strain S2BC-2 antagonistic to Fus a r i u m spp. for control of rhizome rot of ginger. Ann. Microbiol. 63. 989–996.

    Article  CAS  Google Scholar 

  • Shimahara K. & Takiguchi Y. 1988. Preparation of crustacean chitin. Methods Enzymol. 161C: 417–423.

    Article  CAS  Google Scholar 

  • Songsirittigul C., Lapboonrueng S., Pechsrichuang P., Pesatcha P. & Yamabhai M. 2010. Expression and characterization of B. licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour. Technol. 101. 4096–4103.

    Article  Google Scholar 

  • Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis. Mol. Biol. Evolution. 24. 1596–1599.

    Article  CAS  Google Scholar 

  • Tronsmo A. & Harman G.E. 1993. Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Anal. Biochem. 208. 74–79.

    Article  CAS  Google Scholar 

  • Trudel J. & Asselin A. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178. 362–366.

    Article  CAS  Google Scholar 

  • Tsujibo H., Kubota T., Yamamoto M., Miyamoto K. & Inamori Y. 2003. Characterization of chitinase genes from an alka-liphilic actinomycete, Nocardiopsis prasina OPC-131. Appl. Environ. Microbiol. 69. 894–900.

    Article  CAS  Google Scholar 

  • Velusamy P. & Kim K.Y. 2011. Chitinolytic activity of Enterobacter sp. KB3 antagonistic to R. solani and its role in the degradation of living fungal hyphae. Int. Res. J. Microbiol. 2. 206–214.

    Google Scholar 

  • Waghmare S.R. & Ghosh J.S. 2010. Chitobiose production by using novel thermostable chitinase from Bacillus licheniformis strain JS isolated from a mushroom bed. Carbohydr. Res. 345. 2630–2635.

    Article  CAS  Google Scholar 

  • Wang S.L. & Chang W.T. 1997. Purification and characterization of two bifunctional chitinase/lysozymes extracellularly produced by P. aeruginosa K-187 in a shrimp and crab shell powder medium. Appl. Environ. Microbiol. 63. 380–386.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S.L., Liu C.P. & Liang T.W. 2012. Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from B. cereus TKU027. Carbohydr. Polym. 90. 1305–1313.

    Article  CAS  Google Scholar 

  • Wang S.L., Lin T.Y., Yen Y.H., Liao H.F. & Chen Y.J. 2006. Bioconversion of shellfish chitin wastes for the production of B. subtilis W-118 chitinase. Carbohydr. Res. 341. 2507–2515.

    Article  CAS  Google Scholar 

  • Wang S.L., Yieh T.C. & Shih I.L. 1999. Production of antifungal compounds by P. aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme Microb. Technol. 25. 142–148.

    Article  CAS  Google Scholar 

  • Yamabhai M., Emrat S., Sukasem S., Pesatcha P., Jaruseranee N. & Buranabanyat B. 2008. Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. J. Biotechnol. 133. 50–57.

    Article  CAS  Google Scholar 

  • Yasir M., Aslam Z., Kim S.W., Lee S.W., Jeon C.O. & Chung R. 2009. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresour. Technol. 100. 4396–4403.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from Department of Science and Technology (DST), New Delhi, India, under Women Scientist Scheme (WOS-A) (Grant No. SR/WOS-A/LS-186/2010) is gratefully acknowledged. The authors thank Dr. Shailesh R. Waghmare for proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, U., Saraf, M. Purification and characterization of antifungal chitinase from Bacillus safensis MBCU6 and its application for production of chito-oligosaccharides. Biologia 70, 863–868 (2015). https://doi.org/10.1515/biolog-2015-0112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0112

Key words

Navigation