Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 24, 2015

Bacterial diversity and abundance of a creek valley sites reflected soil pH and season

  • M. Sagova-Mareckova , L. Cermak , M. Omelka , M. Kyselkova and J. Kopecky
From the journal Open Life Sciences

Abstract

The effect of environmental factors on bacterial and actinobacterial communities was assessed to predict microbial community structure in natural gradients. Bacterial and actinobacterial communities were studied at four sites differing in vegetation and water regime: creek sediment, wet meadow, dry meadow and deciduous forest located in a shallow valley. The vegetation structure was assessed by phytocoenological releves. T-RFLP and quantitative PCR were used to determine community composition and abundances. Significant relationships between bacterial community structure and selected soil traits at sites located relatively close to each other (within 200 m) were demonstrated. Both the quantity and structure of bacterial communities were significantly influenced by organic matter content, soil moisture and pH. Bacterial diversity was higher in summer, while that of actinobacteria increased in winter. The Simpson’s evenness E was significantly correlated with soil organic matter content. Soil pH had the greatest influence on bacterial community structure showing higher within-site variability in summer than in winter.

References

[1] Allen A.S., Schlesinger W.H., Nutrient limitations to soil microbial biomass and activity in loblolly pine forests, Soil Biol. Biochem., 2004, 36, 581-589 10.1016/j.soilbio.2003.12.002Search in Google Scholar

[2] Brockett B.F.T., Prescott C.E., Grayston S.J., Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada, Soil Biol. Biochem., 2012, 44, 9-20 10.1016/j.soilbio.2011.09.003Search in Google Scholar

[3] Ge Y., Chen C., Xu Z., Oren R., He, J.-Z., The spatial factor, rather than elevated CO2, controls the soil bacterial community in a temperate forest ecosystem, Appl. Environ. Microb., 2010, 76, 7429-7436 10.1128/AEM.00831-10Search in Google Scholar

[4] Lamb E.G., Kennedy N., Siciliano, S.D., Effects of plant species richness and evenness on soil microbial community diversity and function, Plant Soil, 2011, 338, 483-495 10.1007/s11104-010-0560-6Search in Google Scholar

[5] Myers R.T., Zak D.R., White D.C., Peacock A., Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems, Soil Sci. Soc. Am. J., 2001, 65, 359-367 10.2136/sssaj2001.652359xSearch in Google Scholar

[6] Gunnarsson S., Marstorp H., Dahlin A.S., Witter E., Influence of non-cellulose structural carbohydrate composition on plant material decomposition in soil, Biol. Fert. Soils, 2008, 45, 27-36 10.1007/s00374-008-0303-5Search in Google Scholar

[7] Sagova-Mareckova M., Omelka M., Cermak L., Kamenik Z., Olsovska J., Hackl E., et al., Microbial communities show parallels at sites with distinct litter and soil characteristics, 2011, Appl. Environ. Microb., 2011, 77, 7560-7567 10.1128/AEM.00527-11Search in Google Scholar

[8] Millard P., Singh B.K., Does grassland vegetation drive soil microbial diversity, Nutr. Cycl. Agroecosyst., 2010, 88, 147-158 10.1007/s10705-009-9314-3Search in Google Scholar

[9] Droge M., Puhler A., Selbitschka, W., Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies, Biol. Fert. Soils, 1999, 29, 221-245 10.1007/s003740050548Search in Google Scholar

[10] Schimel J.P., Gulledge J.M., Clein-Curley J.S., Lindstrom, J.E., Braddock J.F., Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga, Soil. Biol. Biochem., 1999, 31, 831-838 10.1016/S0038-0717(98)00182-5Search in Google Scholar

[11] Clark J., Campbell J., Grizzle H., Acosta-Martinez V., Zak J., Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert, Microb. Ecol., 2009, 57, 248-260 10.1007/s00248-008-9475-7Search in Google Scholar

[12] Chen M.M., Zhu Y.G., Su Y.H., Chen B.D., Fu B.J., Marschner, P., Effects of soil moisture and plant interactions on the soil microbial community structure, Eur. J. Soil Biol., 2007, 43, 31-38 10.1016/j.ejsobi.2006.05.001Search in Google Scholar

[13] Fierer N., Strickland M.S., Liptzin D., Bradford M.A., Cleveland, C.C., Global patterns in belowground communities, Ecol. Lett., 2009, 12, 1238-1249 10.1111/j.1461-0248.2009.01360.xSearch in Google Scholar

[14] Yergeau E., Bezemer T.M., Hedlund K., Mortimer S.R., Kowalchuk G.A., van der Putten W.H., Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils, Environ. Microbiol., 2010, 12, 2096-2106 10.1111/j.1462-2920.2009.02053.xSearch in Google Scholar

[15] Lauber C.L., Hamady M., Knight R., Fierer, N., Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale, Appl. Environ. Microb., 2009, 75, 5111-5120 10.1128/AEM.00335-09Search in Google Scholar

[16] Youssef N.H., Elshahed M.S., Diversity rankings among bacterial lineages in soil, ISME J., 2009, 3, 305-313 10.1038/ismej.2008.106Search in Google Scholar

[17] Patra A.K., Le Roux X., Grayston S.J., Loiseau P., Louault F., Unraveling the effects of management regime and plant species on soil organic carbon and microbial phospholipid fatty acid profiles in grassland soils, Bioresource Technol., 2008, 99, 3545-3551 10.1016/j.biortech.2007.07.051Search in Google Scholar

[18] Thomson B.C., Ostle N., McNamara N., Bailey M.J., Whiteley A.S., Griffiths R.I., Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil, Microb. Ecol., 2009, 59, 335-343 10.1007/s00248-009-9575-zSearch in Google Scholar

[19] Hartmann M., Frey B., Kflliker R., Widmer, F., Semiautomated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches, J. Microbiol. Meth., 2005, 61, 349-360 10.1016/j.mimet.2004.12.011Search in Google Scholar

[20] Yang S.S., Fan H.Y., Yang C.K., Lin I.C., Microbial population of spruce soil in Tatachia mountain of Taiwan, Chemosphere, 2003, 52, 1489-1498 10.1016/S0045-6535(03)00487-9Search in Google Scholar

[21] Lipson, D.A., Schmidt, S. K., Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains, Appl. Environ. Microb. 2004, 70, 2867-2879. Search in Google Scholar

[22] Ball A.S., Godden B., Helvenstein P., Penninck M.J., McCarthy, A.J., Lignocarbohydrate solubilization from straw by actinomycetes, Appl. Environ. Microb., 1990, 56, 3017-3022 10.1128/aem.56.10.3017-3022.1990Search in Google Scholar PubMed PubMed Central

[23] Manucharova N.A., Vlasenko A.N., Stepanov A.L., Temperature as an autoecological factor of chitinolytic microbial complex formation in soils, Biol. Bull., 2007, 34, 63-169 10.1134/S1062359007020094Search in Google Scholar

[24] Sagova-Mareckova M., Cermak L., Novotna J., Plhackova K., Forstova J., Kopecky, J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics, Appl. Environ. Microb., 2008, 74, 2902-2907 10.1128/AEM.02161-07Search in Google Scholar PubMed PubMed Central

[25] Lane D. 16s/23s rRNA sequencing. In: Stackebrandt E. and Goodfellow M. (Eds.), Nucleic acid techniques in bacterial systematics, John Wiley & Sons, West Sussex, United Kingdom. pp. 115-175, 1991 Search in Google Scholar

[26] Cermak L., Kopecky J., Novotna J., Omelka M., Parkhomenko N., Plhackova K., Sagova-Mareckova, M., Bacterial communities of two contrasting soils reacted differently to lincomycin treatment, Appl. Soil Ecol., 2008, 40, 348-358 10.1016/j.apsoil.2008.06.001Search in Google Scholar

[27] Sakai M., Matsuka A., Komura T., Kanazawa S., Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots, J. Microbiol. Meth., 2004, 59, 81-89 10.1016/j.mimet.2004.06.005Search in Google Scholar PubMed

[28] Bruce K.D., Hiorns W.D., Hobman J.L., Osborn A.M., Strike P., Ritchie, D.A. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction., Appl. Environ. Microbiol., 1992, 58, 3413-3416 10.1128/aem.58.10.3413-3416.1992Search in Google Scholar PubMed PubMed Central

[29] Kyselkova M., Kopecky J., Felfoldi T., Cermak L., Omelka M., Grundmann G. L., et al., Development of a 16S rRNA gene-based prototype microarray for the detection of selected actinomycetes genera, Anton. Leeuw., 2008, 94, 439-453 10.1007/s10482-008-9261-zSearch in Google Scholar PubMed

[30] Kopecky J., Novotna G., Sagova-Mareckova M., Modification of the terminal restriction fragment length polymorphism analysis for assessment of a specific taxonomic group within a soil microbial community, Plant Soil Environ., 2009, 55, 397-403 10.17221/1012-PSESearch in Google Scholar

[31] Stach J.E.M., Maldonado L.A., Ward A.C., Goodfellow M., Bull A.T., New primers for the class Actinobacteria: application to marine and terrestrial environments, Environ. Microbiol., 2003, 5, 828-841 10.1046/j.1462-2920.2003.00483.xSearch in Google Scholar PubMed

[32] Muyzer G., de Waal E.C., Uitterlinden A.G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA, Appl. Environ. Microb., 1993, 59, 695-700 10.1128/aem.59.3.695-700.1993Search in Google Scholar PubMed PubMed Central

[33] McArdle B.H., Anderson M.J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis, Ecology, 2001, 82, 290-297 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2Search in Google Scholar

[34] Oksanen J., Kindt R., Legendre P., O’Hara B., Simpson,G. L., Solymos P., et al., vegan: Community Ecology Package. R package version 2.0-5., 2012 Search in Google Scholar

[35] Gebert J., Stralis-Paveze N., Alawi M., Bodrossy, L. Analysis of methoanotrophic communities in landfill biofilters using diagnostic microarray. Environ. Microbiol., 2008, 10, 1175-1188 10.1111/j.1462-2920.2007.01534.xSearch in Google Scholar

[36] Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., et al., Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microb. , 2009, 75, 7537-7541 10.1128/AEM.01541-09Search in Google Scholar

[37] Seeber J., Seeber G.U.H., Effects of land-use changes on humus forms on alpine pastureland (Central Alps, Tyrol), Geoderma, 2005, 124, 215-222 10.1016/j.geoderma.2004.05.002Search in Google Scholar

[38] Dimitriu P., Grayston S.J., Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils, Microb. Ecol., 2010, 59, 563-573 10.1007/s00248-009-9590-0Search in Google Scholar

[39] Nacke H., Thurmer A., Wollherr A., Will C., Hodac L., Herold N., et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils, Plos One, 2011, 6: e17000 10.1371/journal.pone.0017000Search in Google Scholar

[40] Plante A.F., Conant R.T., Stewart C.E., Paustian K., Six J., Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions, Soil Sci. Soc. Am. J., 2006, 70, 287-296 10.2136/sssaj2004.0363Search in Google Scholar

[41] Dilly O., Bloem J., Vos A., Munch, J.C., Bacterial diversity in agricultural soils during litter decomposition, 2004, Environ. Microbiol. , 2004, 70, 468-474 10.1128/AEM.70.1.468-474.2004Search in Google Scholar

[42] Hirsch P.R., Gilliam L.M., Sohi S.P., Williams J.K., Clark I.M., Murray, P.J., Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities, Soil Biol. Biochem., 2009, 41, 2021-2024 10.1016/j.soilbio.2009.07.011Search in Google Scholar

[43] Shirokikh G., Zenova G.M., Zvyagintsev D.G., Actinomycetes in the rhizosphere of barley grown on acid soddy podzolic soil, Microbiology, 2002, 71, 455-459 10.1023/A:1019853812690Search in Google Scholar

Received: 2013-10-17
Accepted: 2014-6-2
Published Online: 2015-1-24

©2015 Sagova-Mareckova M. et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/biol-2015-0007/html
Scroll to top button