Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access August 1, 2018

Novel molecular and cell biological insights into function of rice α-amylase

  • Toshiaki Mitsui EMAIL logo , Akihito Ochiai , Hiromoto Yamakawa , Kentaro Kaneko , Aya Kitajima-Koga and Marouane Baslam
From the journal Amylase

Abstract

α-Amylases have been of interest in diverse fields for many years because of their importance in basic biology, agriculture, and industry. Starch hydrolysis in plants has been studied extensively in germinating cereal seeds. It is generally accepted that α-amylases are secretory enzymes with a pivotal role in the breakdown of starch reserves in the endosperm. Intriguingly, however, recent investigations reveal that some α-amylases degrade starch in the plastids of living cells. The recent solving of the crystal structure of rice AmyI-1 isoform shows that the binding pocket of starch binding site 1 situated outside of the active site cleft interacts with the substances other than oligosaccharides. These findings provided novel insights into structural and cell biological aspects of α-amylase functions in intracellular transport, organelle targeting, and organ-specific actions. Under global warming, abnormal high temperatures during rice grain filling increase grain chalkiness, resulting in yield loss. Intensive “omics” analyses of developing caryopses and mature grains grown under heat stress showed the downregulation of starch synthesis enzymes and the upregulation of α-amylases. Transgenic studies using ectopic overexpression and suppression of α-amylase revealed that α-amylase is a key factor in grain chalkiness. Here we discuss unique new functions of α-amylase in rice cells.

References

[1] Higgins T.J.V., Zwar J.A., Jacobsen J.V., Gibberellic acid enhances the level of translatable mRNA for α-amylase in barley aleurone layers, Nature, 1976, 260, 166-169.10.1038/260166a0Search in Google Scholar

[2] Kaneko M., Itoh H., Ueguchi-Tanaka M., Ashikari M., Matsuoka M., The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium, Plant Physiol., 2002, 128, 1264-1270.10.1104/pp.010785Search in Google Scholar

[3] Ueguchi-Tanaka M., Nakajima M., Ashikari M., Matsuoika M., Gibberellin receptor and its role in gibberellin signaling in plants, Annu. Rev. Plant Biol., 2007, 58, 183-198.10.1146/annurev.arplant.58.032806.103830Search in Google Scholar

[4] Miyata S., Akazawa T., Biosynthesis of rice seed α-amylase: proteolytic processing and glycosylation of precursor polypeptides by microsomes, J. Cell Biol., 1983, 96, 802-806.10.1083/jcb.96.3.802Search in Google Scholar

[5] Huang N., Stebbins G.L., Rodriguez R.L., Classification and evolution of α-amylase genes in plants, Proc. Natl. Acad. Sci. USA., 1992, 89, 7526-7530.10.1073/pnas.89.16.7526Search in Google Scholar

[6] Mitsui T., Itoh K., The α-amylase multigene family, Trends Plant Sci., 1997, 2, 255-261.10.1016/S1360-1385(97)86347-9Search in Google Scholar

[7] Sethi S., Saini J.S., Mohan A., Brar N.K., Verma S., Sarao N.K., Gill K.S., Comparative and evolutionary analysis of α-amylase gene across monocots and dicots, Funct. Integr. Genomics, 2016, 16, 545-555.10.1007/s10142-016-0505-0Search in Google Scholar PubMed

[8] Bush D.S., Effects of gibberellic acid and environmental factors on cytosolic calcium in wheat aleurone cells, Planta, 1996, 199, 88-89.10.1007/BF00196885Search in Google Scholar

[9] Bethke P.V., Schuurink R., Jones R.L., Hormonal signalling in cereal aleurone, J. Exp. Bot., 1997, 48, 1337-1356.10.1093/jxb/48.7.1337Search in Google Scholar

[10] Mitsui T., Loboda T., Itoh A., Ikarashi T., Sugar-controlled Ca2+ uptake and α-amylase secretion in cultured cells of rice (Oryza sativa L.), Plant Cell Physiol., 1999, 40, 773-783.10.1093/oxfordjournals.pcp.a029605Search in Google Scholar

[11] Guglielminetti L., Perata P., Alpi A., Effect of anoxia on carbohydrate metabolism in rice seedlings, Plant Physiol., 1995, 108, 735-741.10.1104/pp.108.2.735Search in Google Scholar PubMed PubMed Central

[12] Yamakawa H., Hirose T., Kuroda M., Yamaguchi T., Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray, Plant Physiol., 2007, 144, 258-277.10.1104/pp.107.098665Search in Google Scholar PubMed PubMed Central

[13] Kaneko K., Sasaki M., Kuribayashi N., Suzuki H., Sasuga Y., Shiraya T., et al., Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system, Rice, 2016, 9, 26.10.1186/s12284-016-0100-ySearch in Google Scholar PubMed PubMed Central

[14] Asatsuma S., Sawada C., Itoh K., Okito M., Kitajima A., Mitsui T., Involvement of α-amylase I-1 in starch degradation in rice chloroplasts, Plant Cell Physiol., 2005, 46, 858-869.10.1093/pcp/pci091Search in Google Scholar PubMed

[15] Kitajima A., Asatsuma S., Okada H., Hamada Y., Kaneko K., Nanjo Y., et al., The rice α-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids, Plant Cell, 2009, 21, 2844-2858.10.1105/tpc.109.068288Search in Google Scholar PubMed PubMed Central

[16] Smith L.M., Kelleher N.L., Consortium for Top Down Proteomics., Proteoform: a single term describing protein complexity, Nat. Methods, 2013, 10,186-187.10.1038/nmeth.2369Search in Google Scholar PubMed PubMed Central

[17] Daussant J., Miyata S., Mitsui T., Akazawa T., Enzymic mechanism of starch breakdown in germinating rice seeds: 15. Immunochemical study on multiple forms of amylase, Plant Physiol., 1983, 71, 88-95.10.1104/pp.71.1.88Search in Google Scholar PubMed PubMed Central

[18] Mitsui T., Yamaguchi J., Akazawa T., Physicochemical and serological characterization of rice α-amylase isoforms and identification of their corresponding genes, Plant Physiol., 1996, 110, 1395-1404.10.1104/pp.110.4.1395Search in Google Scholar PubMed PubMed Central

[19] Nanjo Y., Asatsuma S., Itoh K., Hori H., Mitsui T., Proteomic identification of α-amylase isoforms encoded by RAmy3B/3C from germinating rice seeds, Biosci. Biotechnol. Biochem., 2004, 68, 112-118.10.1271/bbb.68.112Search in Google Scholar PubMed

[20] Thomas B.R., Rodriguez R., Metabolite signals regulate gene expression and source/sink relations in cereal seedlings, Plant Physiol., 1994, 106, 1235-123910.1104/pp.106.4.1235Search in Google Scholar PubMed PubMed Central

[21] Yu S.M., Lee Y.C., Fang S.C., Chan M.T., Hwa S.F., Liu L.F., Sugars act as signal molecules and osmotica to regulate the expression of α-amylase genes and metabolic activities in germinating cereal grains, Plant Mol. Biol., 1996, 30, 1277-1289.10.1007/BF00019558Search in Google Scholar

[22] Kikuchi S., Satoh K., Nagata T., Kawagashira N., Doi K., Kishimoto N., et al., Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice, Science, 2003, 301, 376-379.10.1126/science.1081288Search in Google Scholar

[23] Yu S.M., Kuo Y.H., Sheu G., Sheu Y.J., Liu L.F., Metabolic derepression of α-amylase gene expression in suspension-cultured cells of rice, J. Biol. Chem., 1991, 266, 21131-21137.10.1016/S0021-9258(18)54830-4Search in Google Scholar

[24] Gubler F., Kalla R., Roberts J.K., Jacobsen J.V., Gibberellin-regulated expression of a Myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI α-amylase gene promoter, Plant Cell, 1995, 7, 1879-1891.10.1105/tpc.7.11.1879Search in Google Scholar

[25] Hong Y.F., Ho T.H., Wu C.F., Ho S.L., Yeh R.H., Lu C.A., et al., Convergent starvation signals and hormone crosstalk in regulating nutrient mobilization upon germination in cereals, Plant Cell, 2012, 24, 2857-2873.10.1105/tpc.112.097741Search in Google Scholar

[26] Lappalainen A., Siika-Aho M., Kalkkinen N., Fagerstrom R., Tenkanen M., Endoxylanase II from Trichoderma reesei has several isoforms with different isoelectric points, Biotechnol. Appl. Biochem., 2000, 31, 61-68.10.1042/BA19990066Search in Google Scholar

[27] Shimba N., Serber Z., Ledwidge R., Miller S.M., Craik C.S., Dotsch V., Quantitative identification of the protonation state of histidines in vitro and in vivo, Biochemistry, 2003, 42, 9227-9234.10.1021/bi0344679Search in Google Scholar

[28] Ochiai A., Sugai H., Harada K., Tanaka S., Ishiyama Y., Ito K., et al., Crystal structure of α-amylase from Oryza sativa: molecular insights into enzyme activity and thermostability, Biosci. Biotechnol. Biochem., 2014, 78, 989-997.10.1080/09168451.2014.917261Search in Google Scholar

[29] Kadziola A., Abe J., Svensson B., Haser R., Crystal and molecular structure of barley α-amylase, J. Mol. Biol., 1994, 239, 104-121.10.1006/jmbi.1994.1354Search in Google Scholar

[30] Henrissat B., Davies G., Structural and sequence-based classification of glycoside hydrolases, Curr. Opin. Struct. Biol., 1997, 7, 637-644.10.1016/S0959-440X(97)80072-3Search in Google Scholar

[31] Mieog J.C., Janecek S., Ral J.P., New insight in cereal starch degradation: identification and structural characterization of four α-amylases in bread wheat, Amylase, 2016, 1, 35-49.10.1515/amylase-2017-0004Search in Google Scholar

[32] Terashima M., Kubo A., Suzawa M., Itoh Y., Katoh, S., The roles of the N-linked carbohydrate chain of rice α-amylase in thermostability and enzyme kinetics, Eur. J. Biochem., 1994, 226, 249-254.10.1111/j.1432-1033.1994.tb20048.xSearch in Google Scholar PubMed

[33] Robert X., Haser R., Mori H., Svensson B., Aghajari N., Oligosaccharide binding to barley α-amylase 1, J. Biol. Chem., 2005, 280, 32968-32978.10.1074/jbc.M505515200Search in Google Scholar PubMed

[34] Cockburn D., Nielsen M. M., Christiansen C., Andersen J. M., Rannes J. B., Blennow A., Svensson B., Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation, Int. J. Biol. Macromol., 2015, 75, 338-345.10.1016/j.ijbiomac.2015.01.054Search in Google Scholar PubMed

[35] Machovic M., Janecek S., The invariant residues in the α-amylase family: just the catalytic triad, Biologia, 2003, 58, 1127-1132.Search in Google Scholar

[36] Hayashi M., Turu A., Mitsui T., Takahashi N., Hanzawa H., Arata Y., Akazawa T., Structure and biosynthesis of the xylosecontaining carbohydrate moiety of rice α-amylase, Eur. J. Biochem., 1990, 191, 287-295.10.1111/j.1432-1033.1990.tb19122.xSearch in Google Scholar PubMed

[37] Kaneko K., Shiraya T., Mitsui T., Nishimura S., Rapid and high-throughput N-glycomic analysis of plant glycoproteins, Methods Mol. Biol., 2014, 1072, 645-653.10.1007/978-1-62703-631-3_44Search in Google Scholar PubMed

[38] Mundy, J., Munck, L., Synthesis and regulation of hydrolytic enzymes in germinating barley, pp. 139-148, In: Hill E.D., Munck L. (Eds.), New Approaches to Research on Cereal Carbohydrates, Amsterdam: Elsevier, 1985.Search in Google Scholar

[39] Okamoto K., Kitano H., Akazawa T., Biosynthesis and excretion of hydrolases in germinating cereal seeds, Plant Cell Physiol., 1980, 21, 201-204.Search in Google Scholar

[40] Strasser R., Plant protein glycosylation, Glycobiology, 2016, 26, 926-939.10.1093/glycob/cww023Search in Google Scholar PubMed PubMed Central

[41] Mitsui T., Akazawa T., Preferential secretion of R-type α-amylase molecules in rice seed scutellum at high temperatures, Plant Physiol., 1986, 82, 880-884.10.1104/pp.82.4.880Search in Google Scholar PubMed PubMed Central

[42] Villarejo A., Buren S., Larsson S., Dejardin A., Monne M., Rudhe C., et al., Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast, Nat. Cell Biol., 2005, 7, 1224-1231.10.1038/ncb1330Search in Google Scholar PubMed

[43] Nanjo Y., Oka H., Ikarashi N., Kaneko K., Kitajima A., Mitsui T., et al., Rice plastidial N-glycosylated nucleotide pyrophosphatase/ phosphodiesterase is transported from the ER-Golgi to the chloroplast through the secretory pathway, Plant Cell, 2006, 18, 2582-2592.10.1105/tpc.105.039891Search in Google Scholar PubMed PubMed Central

[44] Ritzenthaler C., Nebenfuhr A., Movafeghi A., Stussi-Garaud C., Behnia L., Pimpl P., et al., Reevaluation of the effects of Brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera, Plant Cell, 2002, 14, 237-261.10.1105/tpc.010237Search in Google Scholar PubMed

[45] Baslam M., Oikawa K., Kitajima-Koga A., Kaneko K., Mitsui T., Golgi-to-plastid trafficking of proteins through secretory pathway: insights into vesicle-mediated import toward the plastids, Plant Signal. Behav., 2016, 11, e1221558.10.1080/15592324.2016.1221558Search in Google Scholar PubMed

[46] Kikuchi S., Bedard J., Hirano M., Hirabayashi Y., Oishi M., Imai M., et al., Uncovering the protein translocon at the chloroplast inner envelope membrane, Science, 2013, 339, 571-574.10.1126/science.1229262Search in Google Scholar

[47] Paila Y.D., Richardson L.G., Schnell D.J., New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development, J. Mol. Biol., 2015, 427, 1038-1060.10.1016/j.jmb.2014.08.016Search in Google Scholar

[48] Sogaard M., Kadziola A., Haser R., Svensson B., Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley α-amylase 1, J. Biol. Chem., 1993, 268, 22480-22484.10.1016/S0021-9258(18)41554-2Search in Google Scholar

[49] Mitsui T., Yamakawa H, Kobata T., Molecular physiological aspects of chalking mechanism in rice grains under high-temperature stress, Plant Prod. Sci., 2016, 19, 22-29.10.1080/1343943X.2015.1128112Search in Google Scholar

[50] Tashiro T., Wardlaw I.F., The effect of high temperature on kernel dimensions and the type of occurrence of kernel damage in rice, Aust. J. Agric. Res., 1991, 42, 485-496.10.1071/AR9910485Search in Google Scholar

[51] Morita S., Shiratsuchi H., Takanashi J., Fujita K., Effect of high temperature on grain ripening in rice plants: analysis of the effect of high night and high day temperatures applied to the panicle and other parts of the plant, Jpn. J. Crop Sci., 2004, 73, 77-83.Search in Google Scholar

[52] Fitzgerald M.A., McCouch S.R., Hall R.D., Not just a grain of rice: the quest for quality, Trends Plant Sci., 2009, 14, 133-139.10.1016/j.tplants.2008.12.004Search in Google Scholar PubMed

[53] Zakaria S., Matsuda T., Tajima S., Nitta Y., Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars, Plant Prod. Sci., 2002, 5, 160-168.10.1626/pps.5.160Search in Google Scholar

[54] Tsutsui K., Kaneko K., Hanashiro I., Nishinari K., Mitsui T., Characteristics of opaque and translucent parts of high temperature stressed grains of rice, J. Appl. Glycosci., 2013, 60, 61-67.10.5458/jag.jag.JAG-2012_014Search in Google Scholar

[55] Lin S.K., Chang M.C., Tsai T.G., Lur H.S., Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression, Proteomics, 2005, 5, 2140-2156.10.1002/pmic.200401105Search in Google Scholar PubMed

[56] Yamakawa H., Hakata M., Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation, Plant Cell Physiol., 2010, 51, 795-809.10.1093/pcp/pcq034Search in Google Scholar PubMed PubMed Central

[57] Hakata M., Kuroda M., Miyashita T., Yamaguchi T., Kojima M., Sakakibara H., et al., Suppression of α-amylase genes improves quality of rice grain ripened under high temperature, Plant Biotechnol. J., 2012, 10, 1110-1117.10.1111/j.1467-7652.2012.00741.xSearch in Google Scholar PubMed

[58] Nakata M., Fukamatsu Y., Miyashita T., Hakata M., Kimura R., Nakata Y., et al., High temperature-induced expression of rice α-amylases in developing endosperm produces chalky grains, Front. Plant Sci., 2017, 8, 2089.Search in Google Scholar

[59] Asatsuma S., Sawada C., Kitajima A., Asakura T., Mitsui T., α-Amylase affects starch accumulation in the rice grain, J. Appl. Glycosci., 2006, 53, 187-192.10.5458/jag.53.187Search in Google Scholar

[60] Yamakawa H., Hirai-Kimura R., Nakata Y., Nakata M., Kuroda M., Yamaguchi T., An activity-staining method on filtration paper enables high-throughput screening of temperature-sensitive and inactive mutations of rice α-amylase for improvement of rice grain quality, Plant Cell Physiol., 2017, 58, 658-667.10.1093/pcp/pcx030Search in Google Scholar PubMed

[61] Suzuki T., Eiguchi M., Kumamaru T., Satoh H., Matsusaka H., Moriguchi K., et al., MNU-induced mutant pools and high performance TILLING enables finding of any gene mutation in rice, Mol. Genet. Genomics, 2008, 279, 213-223.10.1007/s00438-007-0293-2Search in Google Scholar PubMed

[62] Colbert T., Till B.J., Tompa R., Reynolds S., Steine M.N., Yeung A.T., et al., High-throughput screening for induced point mutations, Plant Physiol., 2001, 126, 480-484.10.1104/pp.126.2.480Search in Google Scholar PubMed PubMed Central

Received: 2018-05-11
Accepted: 2018-07-09
Published Online: 2018-08-01

© 2018 Toshiaki Mitsui, et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/amylase-2018-0004/html
Scroll to top button