Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access November 6, 2021

Quasiconformal Jordan Domains

  • Toni Ikonen EMAIL logo

Abstract

We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y, dY). We say that a metric space (Y, dY) is a quasiconformal Jordan domain if the completion ̄Y of (Y, dY) has finite Hausdorff 2-measure, the boundaryY = ̄Y \ Y is homeomorphic to 𝕊1, and there exists a homeomorphism ϕ: 𝔻 →(Y, dY) that is quasiconformal in the geometric sense.

We show that ϕ has a continuous, monotone, and surjective extension Φ: 𝔻 ̄ → Y ̄. This result is best possible in this generality. In addition, we find a necessary and sufficient condition for Φ to be a quasiconformal homeomorphism. We provide sufficient conditions for the restriction of Φ to 𝕊1 being a quasisymmetry and to ∂Y being bi-Lipschitz equivalent to a quasicircle in the plane.

References

[1] L. Ambrosio and P. Tilli. Topics on analysis in metric spaces, volume 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.Search in Google Scholar

[2] A. Beurling and L. Ahlfors. The boundary correspondence under quasiconformal mappings. Acta Math., 96:125–142, 1956.10.1007/BF02392360Search in Google Scholar

[3] M. Bonk, J. Heinonen, and S. Rohde. Doubling conformal densities. J. Reine Angew. Math., 541:117–141, 2001.10.1515/crll.2001.089Search in Google Scholar

[4] M. Bonk, P. Koskela, and S. Rohde. Conformal metrics on the unit ball in Euclidean space. Proc. London Math. Soc. (3), 77(3):635–664, 1998.10.1112/S0024611598000586Search in Google Scholar

[5] V. I. Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007.10.1007/978-3-540-34514-5Search in Google Scholar

[6] P. Creutz and M. Romney. The branch set of minimal disks in metric spaces. arXiv e-prints, page arXiv:2008.07413, August 2020.Search in Google Scholar

[7] J. Duda. Absolutely continuous functions with values in a metric space. Real Anal. Exchange, 32(2):569–581, 2007.10.14321/realanalexch.32.2.0569Search in Google Scholar

[8] H. Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.Search in Google Scholar

[9] J. B. Garnett and D. E. Marshall. Harmonic measure, volume 2 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2005.Search in Google Scholar

[10] P. Haïssinsky. A sewing problem in metric spaces. Ann. Acad. Sci. Fenn. Math., 34(2):319–345, 2009.Search in Google Scholar

[11] J. Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.10.1007/978-1-4613-0131-8Search in Google Scholar

[12] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson. Sobolev spaces on metric measure spaces: An approach based on upper gradients, volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015.10.1017/CBO9781316135914Search in Google Scholar

[13] D. Herron and D. Meyer. Quasicircles and bounded turning circles modulo bi-Lipschitz maps. Rev. Mat. Iberoam., 28(3):603–630, 2012.10.4171/RMI/687Search in Google Scholar

[14] T. Ikonen and M. Romney. Quasiconformal geometry and removable sets for conformal mappings. J. Anal. Math., to appear.Search in Google Scholar

[15] N. J. Korevaar and R. M. Schoen. Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom., 1(3-4):561–659, 1993.10.4310/CAG.1993.v1.n4.a4Search in Google Scholar

[16] A. Lytchak and S. Wenger. Area minimizing discs in metric spaces. Arch. Ration. Mech. Anal., 223(3):1123–1182, 2017.10.1007/s00205-016-1054-3Search in Google Scholar

[17] S. Merenkov and K. Wildrick. Quasisymmetric Koebe uniformization. Rev. Mat. Iberoam., 29(3):859–909, 2013.10.4171/RMI/743Search in Google Scholar

[18] K. Rajala. Uniformization of two-dimensional metric surfaces. Invent. Math., 207(3):1301–1375, 2017.10.1007/s00222-016-0686-0Search in Google Scholar

[19] K. Rajala and M. Romney. Reciprocal lower bound on modulus of curve families in metric spaces. Ann. Acad. Sci. Fenn. Math., 44:681–692, 2019.10.5186/aasfm.2019.4442Search in Google Scholar

[20] S. Semmes. Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. (N.S.), 2(2):155–295, 1996.10.1007/BF01587936Search in Google Scholar

[21] P. Tukia and J. Väisälä. Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math., 5(1):97–114, 1980.10.5186/aasfm.1980.0531Search in Google Scholar

[22] S. Willard. General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.Search in Google Scholar

[23] R. L. Wilder. Topology of manifolds, volume 32 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, R.I., 1979. Reprint of 1963 edition.Search in Google Scholar

[24] K. Wildrick. Quasisymmetric parametrizations of two-dimensional metric planes. Proc. Lond. Math. Soc. (3), 97(3):783–812, 2008.10.1112/plms/pdn023Search in Google Scholar

[25] K. Wildrick. Quasisymmetric structures on surfaces. Trans. Amer. Math. Soc., 362(2):623–659, 2010.10.1090/S0002-9947-09-04861-2Search in Google Scholar

[26] M. Williams. Geometric and analytic quasiconformality in metric measure spaces. Proc. Amer. Math. Soc., 140(4):1251–1266, 2012.10.1090/S0002-9939-2011-11035-9Search in Google Scholar

Received: 2020-11-13
Accepted: 2021-07-08
Published Online: 2021-11-06

© 2021 Toni Ikonen, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/agms-2020-0127/html
Scroll to top button