Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 15, 2023

PL Morse theory in low dimensions

  • Romain Grunert , Wolfgang Kühnel and Günter Rote EMAIL logo
From the journal Advances in Geometry

Abstract

We discuss a PL analog of Morse theory for PL manifolds. There are several notions of regular and critical points. A point is homologically regular if the homology does not change when passing through its level; it is strongly regular if the function can serve as one coordinate in a chart. Several criteria for strong regularity are presented. In particular, we show that in dimensions d ≤ 4 a homologically regular point on a PL d-manifold is always strongly regular. Examples show that this fails in higher dimensions d ≥ 5. One of our constructions involves an embedding of the dunce hat into 4-space and Mazur’s contractible 4-manifold. Finally, decidability questions in this context are discussed.

MSC 2010: 57R70; 57Q99; 52B70; 68Q17
  1. Communicated by: M. Joswig

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DFG — German Research Foundation) — Project-ID 195170736 — as part of the Collaborative Research Center TRR 109, Discretization in Geometry and Dynamics.

We thank Benjamin Burton for checking the topology of the tubular neighborhood M in Section 8 with the Regina software.

References

[1] T. Banchoff, Critical points and curvature for embedded polyhedra. J. Differential Geometry 1 (1967), 245–256. MR225327 Zbl 0164.2290310.4310/jdg/1214428092Search in Google Scholar

[2] T. F. Banchoff, Critical points and curvature for embedded polyhedral surfaces. Amer. Math. Monthly 77 (1970), 475–485. MR259812 Zbl 0191.5280110.1080/00029890.1970.11992523Search in Google Scholar

[3] T. F. Banchoff, W. Kühnel, Tight polyhedral models of isoparametric families, and PL-taut submanifolds. Adv. Geom. 7 (2007), 613–629. MR2360904 Zbl 1134.5202110.1515/ADVGEOM.2007.035Search in Google Scholar

[4] B. Benedetti, Smoothing discrete Morse theory. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), 335–368. MR3559605 Zbl 1354.5703410.2422/2036-2145.201407_002Search in Google Scholar

[5] B. Benedetti, F. H. Lutz, The dunce hat in a minimal non-extendably collapsible 3-ball. Electronic Geometry Model No. 2013.10.001. www.eg-models.de/models/Polytopal_Complexes/2013.10.001/_direct_link.htmlSearch in Google Scholar

[6] M. Bestvina, PL Morse theory. Math. Commun. 13 (2008), 149–162. MR2488666 Zbl 1222.20030Search in Google Scholar

[7] M. Bestvina, N. Brady, Morse theory and finiteness properties of groups. Invent. Math. 129 (1997), 445–470. MR1465330 Zbl 0888.2002110.1007/s002220050168Search in Google Scholar

[8] A. Björner, F. H. Lutz, Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere. Experiment. Math. 9 (2000), 275–289. MR1780212 Zbl 1101.5730610.1080/10586458.2000.10504652Search in Google Scholar

[9] E. D. Bloch, Polyhedral representation of discrete Morse functions. Discrete Math. 313 (2013), 1342–1348. MR3061119 Zbl 1286.5703010.1016/j.disc.2013.02.020Search in Google Scholar

[10] D. Braess, Morse-Theorie für berandete Mannigfaltigkeiten. Math. Ann. 208 (1974), 133–148. MR348790 Zbl 0263.5800510.1007/BF01432381Search in Google Scholar

[11] U. Brehm, W. Kühnel, Combinatorial manifolds with few vertices. Topology 26 (1987), 465–473. MR919730 Zbl 0681.5700910.1016/0040-9383(87)90042-5Search in Google Scholar

[12] A. V. Chernavsky, V. P. Leksine, Unrecognizability of manifolds. Ann. Pure Appl. Logic 141 (2006), 325–335. MR2234702 Zbl 1115.5701410.1016/j.apal.2005.12.011Search in Google Scholar

[13] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams. Discrete Comput. Geom. 37 (2007), 103–120. MR2279866 Zbl 1117.5402710.1007/s00454-006-1276-5Search in Google Scholar

[14] H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups. Springer 1980. MR562913 Zbl 0422.2000110.1007/978-3-662-21943-0Search in Google Scholar

[15] H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30 (2003), 87–107. MR1991588 Zbl 1029.5702310.1007/s00454-003-2926-5Search in Google Scholar

[16] J. Eells, Jr., N. H. Kuiper, Manifolds which are like projective planes. Inst. Hautes Études Sci. Publ. Math. no. 14 (1962), 5–46. MR145544 Zbl 0109.1570110.1007/BF02684323Search in Google Scholar

[17] R. Forman, Morse theory for cell complexes. Adv. Math. 134 (1998), 90–145. MR1612391 Zbl 0896.5702310.1006/aima.1997.1650Search in Google Scholar

[18] D. Govc, On the definition of the homological critical value. J. Homotopy Relat. Struct. 11 (2016), 143–151. MR3462103 Zbl 1337.5500910.1007/s40062-015-0101-3Search in Google Scholar

[19] R. Grunert, Piecewise linear Morse theory. PhD thesis, Freie Universität Berlin, 2017, 217 pages. https://refubium.fu-berlin.de/handle/fub188/12531Search in Google Scholar

[20] R. Grunert, W. Kühnel, G. Rote, PL Morse theory in low dimensions. Preprint 2019, arXiv:1912.05054 [math.GT]Search in Google Scholar

[21] W. Haken, Theorie der Normalflächen. Acta Math. 105 (1961), 245–375. MR141106 Zbl 0100.1940210.1007/BF02559591Search in Google Scholar

[22] M. A. Kervaire, Smooth homology spheres and their fundamental groups. Trans. Amer. Math. Soc. 144 (1969), 67–72. MR253347 Zbl 0187.2040110.1090/S0002-9947-1969-0253347-3Search in Google Scholar

[23] A. Kosiński, Singularities of piecewise linear mappings. I. Mappings into the real line. Bull. Amer. Math. Soc. 68 (1962), 110–114. MR132549 Zbl 0126.1880110.1090/S0002-9904-1962-10744-7Search in Google Scholar

[24] W. Kühnel, Total absolute curvature of polyhedral manifolds with boundary in En Geom. Dedicata 8 (1979), 1–12. MR533625 Zbl 0404.5304810.1007/BF00147927Search in Google Scholar

[25] W. Kühnel, Triangulations of manifolds with few vertices. In: Advances in differential geometry and topology, 59–114, World Sci. Publ., Teaneck, NJ 1990. MR1095532 Zbl 0836.5700210.1142/9789814439381_0004Search in Google Scholar

[26] W. Kühnel, Tight polyhedral submanifolds and tight triangulations. Springer 1995. MR1439748 Zbl 0834.5300410.1007/BFb0096341Search in Google Scholar

[27] N. H. Kuiper, Morse relations for curvature and tightness. In: Proceedings of Liverpool Singularities Symposium, II (1969/1970), 77–89. Lecture Notes in Math., Vol. 209, 1971. MR0343297 Zbl 0216.1880210.1007/BFb0068893Search in Google Scholar

[28] E. Luft, On the combinatorial Schoenflies conjecture. Proc. Amer. Math. Soc. 16 (1965), 1008–1011. MR184238 Zbl 0136.4450410.1090/S0002-9939-1965-0184238-6Search in Google Scholar

[29] F. H. Lutz, The Manifold Page http://www.math.tu-berlin.de/∼lutz/stellar/Search in Google Scholar

[30] F. H. Lutz, G. M. Ziegler, A small polyhedral ℤ-acyclic 2-complex in ℝ4. Electronic Geometry Model No. 2008.11.001. http://www.eg-models.de/models/Polytopal_Complexes/2008.11.001/_applet.htmlSearch in Google Scholar

[31] J. Matoušek, M. Tancer, U. Wagner, Hardness of embedding simplicial complexes in ℝd J. Eur. Math. Soc. 13 (2011), 259–295. MR2746766 Zbl 1208.6813010.4171/JEMS/252Search in Google Scholar

[32] B. Mazur, A note on some contractible 4-manifolds. Ann. of Math. (2) 73 (1961), 221–228. MR125574 Zbl 0127.1360410.2307/1970288Search in Google Scholar

[33] A. Mijatović, Simplifying triangulations of S3 Pacific J. Math. 208 (2003), 291–324. MR1971667 Zbl 1071.5201610.2140/pjm.2003.208.291Search in Google Scholar

[34] J. Milnor, Morse theory. Princeton Univ. Press 1963. MR0163331 Zbl 0108.10401Search in Google Scholar

[35] M. Morse, Topologically non-degenerate functions on a compact n-manifold M J. Analyse Math. 7 (1959), 189–208. MR113233 Zbl 0096.3060310.1007/BF02787685Search in Google Scholar

[36] M. Morse, F-deformations and F-tractions. Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 1634–1635. MR321098 Zbl 0257.5400910.1073/pnas.70.6.1634Search in Google Scholar PubMed PubMed Central

[37] M. Morse, S. S. Cairns, Critical point theory in global analysis and differential topology: An introduction. Academic Press 1969. MR0245046 Zbl 0177.52102Search in Google Scholar

[38] G. Rote, Piecewise linear Morse theory. Oberwolfach Reports 3 (2006), 696–698, Eur. Math. Society Publishing House, doi:10.4171/OWR/2006/1210.4171/OWR/2006/12Search in Google Scholar

[39] C. P. Rourke, B. J. Sanderson, Introduction to piecewise-linear topology. Springer 1972. MR0350744 Zbl 0254.5701010.1007/978-3-642-81735-9Search in Google Scholar

[40] Y. Rudyak, Piecewise linear structures on topological manifolds. World Scientific Publishing, Hackensack, NJ 2016. MR3467983 Zbl 1356.5700310.1142/9887Search in Google Scholar

[41] I. A. Volodin, V. E. Kuznecov, A. T. Fomenko, The problem of the algorithmic discrimination of the standard three-dimensional sphere. (Russian) Uspehi Mat. Nauk 29 (1974), 71–168. English translation: Russ. Math. Surveys 29 (1974), 71–172 (1975). MR0405426 Zbl 0311.5700110.1070/RM1974v029n05ABEH001296Search in Google Scholar

[42] E. C. Zeeman, Unknotting combinatorial balls. Ann. of Math. (2) 78 (1963), 501–526. MR160218 Zbl 0122.1790110.2307/1970538Search in Google Scholar

[43] E. C. Zeeman, On the dunce hat. Topology 2 (1964), 341–358. MR156351 Zbl 0116.4080110.1016/0040-9383(63)90014-4Search in Google Scholar

[44] G. M. Ziegler, Lectures on polytopes. Springer 1995. MR1311028 Zbl 0823.5200210.1007/978-1-4613-8431-1Search in Google Scholar

Received: 2020-07-10
Revised: 2022-04-10
Published Online: 2023-01-15
Published in Print: 2023-01-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2022-0027/html
Scroll to top button