Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 18, 2022

Geometric characterisation of subvarieties of 𝓔6(𝕂) related to the ternions and sextonions

  • Anneleen De Schepper EMAIL logo
From the journal Advances in Geometry

Abstract

The main achievement of this paper is a geometric characterisation of certain subvarieties of the Cartan variety 𝓔6(𝕂) over an arbitrary field 𝕂. The characterised varieties arise as Veronese representations of certain ring projective planes over quadratic subalgebras of the split octonions 𝕆’ over 𝕂 (among which the sextonions, a 6-dimensional non-associative algebra). We describe how these varieties are linked to the Freudenthal–Tits magic square, and discuss how they would even fit in, when also allowing the sextonions and other “degenerate composition algebras” as the algebras used to construct the square.

MSC 2010: 14N05; 51A45; 51B25; 51C05; 51E24

Acknowledgements

Many thanks to the referee, whose helpful comments have increased the readabilty of this paper.

  1. Funding: The author was supported by the Fund for Scientific Research - Flanders (FWO - Vlaanderen).

  2. Communicated by: R. Weiss

References

[1] A. De Schepper, Characterisations and classifications in the theory of parapolar spaces. PhD Thesis, University of Gent, 2019. https://cage.ugent.be/~ads/links/PhD.pdfSearch in Google Scholar

[2] A. De Schepper, H. Van Maldeghem, Veronese representation of projective Hjelmslev planes over some quadratic alternative algebras. Results Math 75 (2020), Paper No. 9, 51 pages. MR4040638 Zbl 1436.5100510.1007/s00025-019-1133-5Search in Google Scholar

[3] A. De Schepper, J. Schillewaert, H. Van Maldeghem, A uniform characterisation of the varieties of the second row of the Freudenthal–Tits Magic Square over arbitrary fields. Submitted. https://cage.ugent.be/$~$ads/links/8.pdfSearch in Google Scholar

[4] A. De Schepper, J. Schillewaert, H. Van Maldeghem, M. Victoor, Constructions and characterisation of the varieties of the third row of the Freudenthal–Tits Magic Square. In progress.Search in Google Scholar

[5] I. Kaplansky, Infinite-dimensional quadratic forms admitting composition. Proc. Amer. Math. Soc 4 (1953), 956–960. MR59895 Zbl 0052.1100410.1090/S0002-9939-1953-0059895-7Search in Google Scholar

[6] O. Krauss, J. Schillewaert, H. Van Maldeghem, Veronesean representations of Moufang planes. Michigan Math. J 64 (2015), 819–847. MR3426617 Zbl 1335.5100510.1307/mmj/1447878033Search in Google Scholar

[7] R. A. Kunze, S. Scheinberg, Alternative algebras having scalar involutions. Pacific J. Math 124 (1986), 159–172. MR850673 Zbl 0603.1701310.2140/pjm.1986.124.159Search in Google Scholar

[8] J. M. Landsberg, L. Manivel, The sextonions and E712 . Adv. Math 201 (2006), 143–179. MR2204753 Zbl 1133.1700710.1016/j.aim.2005.02.001Search in Google Scholar

[9] K. McCrimmon, A taste of Jordan algebras. Springer 2004. MR2014924 Zbl 1044.17001Search in Google Scholar

[10] K. McCrimmon, Pre-book on alternative algebras. https://mysite.science.uottawa.ca/neher/Papers/alternative/Search in Google Scholar

[11] J. Schillewaert, H. Van Maldeghem, Projective planes over 2-dimensional quadratic algebras. Adv. Math 262 (2014), 784–822. MR3228442 Zbl 1383.5100510.1016/j.aim.2014.05.008Search in Google Scholar

[12] J. Schillewaert, H. Van Maldeghem, On the varieties of the second row of the split Freudenthal–Tits magic square. Ann. Inst. Fourier (Grenoble) 67 (2017), 2265–2305. MR3742466 Zbl 1410.5101010.5802/aif.3136Search in Google Scholar

[13] E. E. Shult, Points and lines. Springer 2011. MR2761484 Zbl 1213.5100110.1007/978-3-642-15627-4Search in Google Scholar

[14] J. Tits, Sur certaines classes d’espaces homogènes de groupes de Lie. Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8 29 (1955), 268 pages. MR76286 Zbl 0067.12301Search in Google Scholar

[15] F. D. Veldkamp, Geometry over rings. In: Handbook of incidence geometry, 1033–1084, North-Holland 1995. MR1360734 Zbl 0822.5100410.1016/B978-044488355-1/50021-9Search in Google Scholar

[16] A. L. Wells, Jr., Universal projective embeddings of the Grassmannian, half spinor, and dual orthogonal geometries. Quart. J. Math. Oxford Ser (2) 34 (1983), 375–386. MR711527 Zbl 0537.5100810.1093/qmath/34.3.375Search in Google Scholar

[17] B. W. Westbury, Sextonions and the magic square. J. London Math. Soc (2) 73 (2006), 455–474. MR2225497 Zbl 1154.1730410.1112/S0024610706022605Search in Google Scholar

[18] C. Zanella, Universal properties of the Corrado Segre embedding. Bull. Belg. Math. Soc. Simon Stevin 3 (1996), 65–79. MR1378498 Zbl 0859.5100710.36045/bbms/1105540759Search in Google Scholar

Received: 2020-06-09
Revised: 2021-12-02
Published Online: 2022-04-18
Published in Print: 2023-01-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2022-0005/html
Scroll to top button